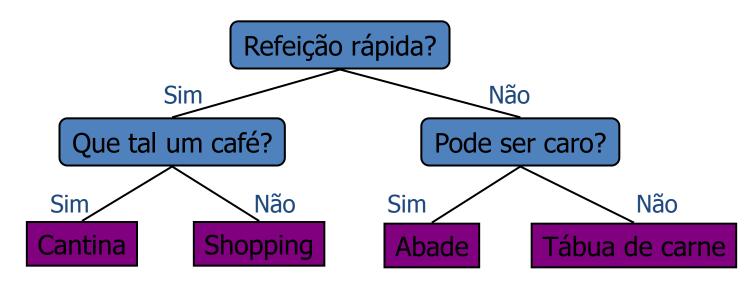
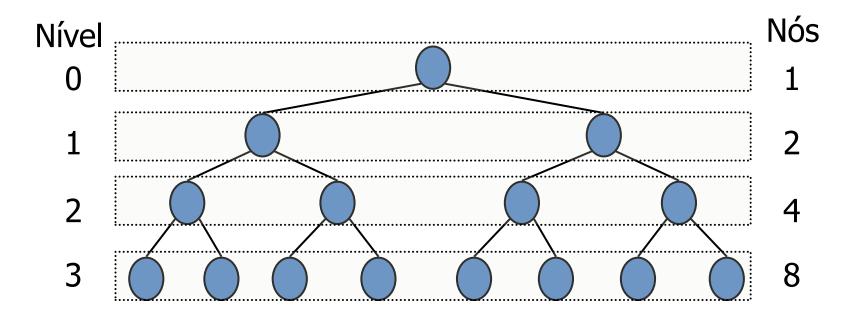

Árvore Binária

- Árvore com as seguintes propriedades:
 - Cada nó interno tem no máximo dois filhos
 - Os filhos de um nó formam um par ordenado (filho da esquerda, filho da direita)
- Árvore binária própria
 - Cada nó tem zero ou dois filhos
- Aplicações
 - Expressões aritméticas
 - Árvores de decisão


Árvore de Expressões Aritméticas

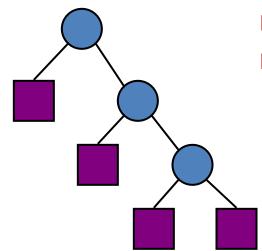
- Árvore associada a uma expressão aritmética
 - Nós internos: operadores
 - Nós externos: operandos
- Exemplo: (2 x (a-1) + (3 x b))



Árvore de Decisão

- Árvore associada a um processo de decisão
 - Nós internos: questões com respostas sim/não
 - Nós externos: decisões
- Exemplo: Onde jantar?

Propriedades da Árvore Binária



- Número máximo de nós em um nível h é 2^h
- Número total de nós é, no máximo, 2^{h+1} -1

Propriedades da Árvore Binária Própria

Notação

- n = número de nós
- e = nós externos
- i = nós internos
- h = altura (height)

Propriedades

- \Box e = i + 1
- \Box n = 2e 1
- \square h + 1 \leq e \leq 2^h
- \Box h \leq i \leq 2^h 1
- $\Box \ \ h \ge \log_2(n+1) 1$
- \Box h \le (n 1)/2

AB – Operações de Acesso

- Estende o TAD Árvore
- Métodos de acesso
 - Nó leftChild(Nó v)
 - retorna o filho esquerdo de um nó
 - Nó rightChild(Nó v)
 - retorna o filho direito de um nó
 - Nó sibling(Nó v)
 - Retorna o irmão de um nó

AB – Caminhamentos

Prefixado

Algoritmo binaryPreOrder(T, v)

execute a ação para o nó v se T.isInternal(v) então binaryPreOrder(T, T.leftChild(v)) binaryPreOrder(T, T.rightChild(v))

Pós-fixado

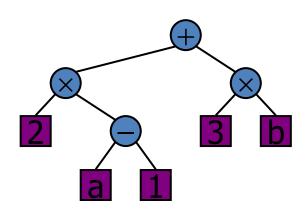
Algoritmo binaryPostOrder(T, v)

se T.isInternal(v) então binaryPostOrder(T, T.leftChild(v)) binaryPostOrder(T, T.rightChild(v)) execute a ação para o nó v

AB – Caminhamentos

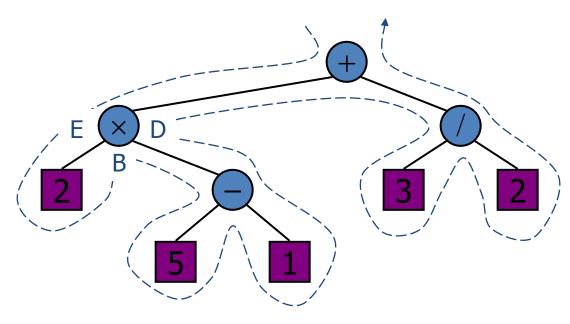
Interfixado

Expressão Aritmética:


$$((2 \times (a - 1)) + (3 \times b))$$

Algoritmo inOrder(T, v)

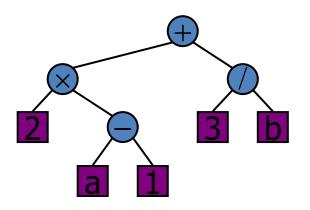
se T.isInternal(v) então inOrder(T, T.leftChild(v))


execute a ação para o nó v

se T.isInternal(v) então inOrder(T, T.rightChild(v))

AB – Caminhamento de Euler

- Caminho que visita cada aresta exactamente uma vez
 - pela esquerda (prefixado pré ordem)
 - por baixo (interfixado em ordem)
 - pela direita (pós-fixado pós ordem)

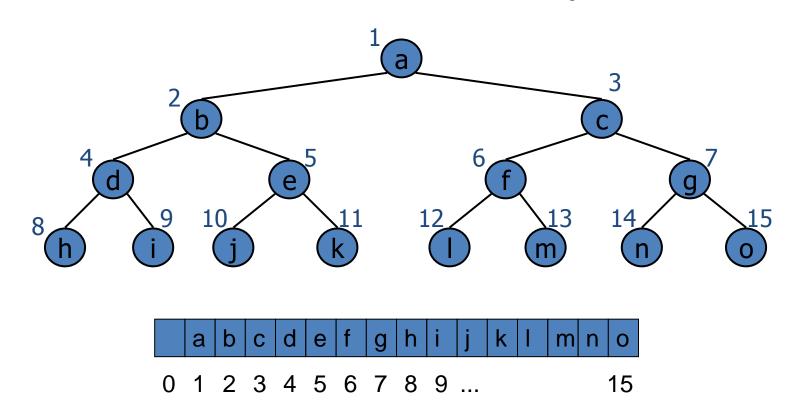

AB – Caminhamento de Euler

- Cada nó v da árvore é "visitado" três vezes pelo caminhamento de Euler. Cada "visita" pode corresponder a uma "ação" a ser tomada pelo algoritmo, como segue:
 - "ação pela esquerda" (antes do caminhamento sobre a subárvore da esquerda de v);
 - "ação por baixo" (entre o caminhamento entre as duas subárvores de v); e
 - "ação pela direita" (depois do caminhamento sobre a subárvore da direita de v).

AB – Caminhamento de Euler

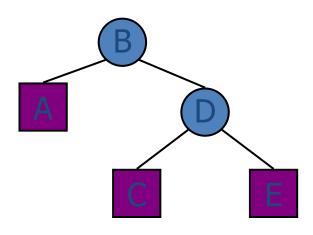
Interfixado

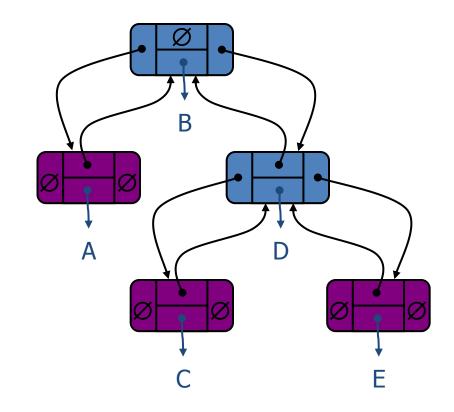
Expressão Aritmética:
$$((2 \times (a - 1)) + (3 / b))$$




```
Algoritmo printExpression(T, v)
```

```
se T.isInternal(v) então //ação "pela esquerda"
print ( "(" );
se T.hasLeft(v) então
printExpression(T, T.leftChild(v));
print ( v.element() ); //ação "por baixo"
se T.hasRight(v) então
printExpression(T, T.rightChild(v));
se T.isInternal(v) então
print ( ")" ); //ação "pela direita"
```


Estruturas de Dados para Árvores


Árvore binária baseada em arranjo

Estrutura Encadeada para Árvores Binárias

- Um nó (BTNode) armazena referências para:
 - Nó pai
 - Elemento
 - Filho da esquerda
 - Filho da direita

