

Aula 06

SISTEMAS DE MEMÓRIAS

- V Uma memória é um dispositivo que permite um computador armazenar dados temporariamente ou permanentemente. Sabemos que todos os computadores possuem memória.
 - ✓ internas e externas.
 - ✓ Principal e secundária

Tipos de acessos

✓ Acesso sequencial

- ✓ A memória fica organizada em unidades de dados chamadas registros, sendo acessados de forma linear. Tem um tempo de acesso variável.
- ✓ Um exemplo deste tipo é a fita magnética;

✓ Acesso direto

- ✓ envolve um mecanismo compartilhado de leitura-escrita, sendo os seus blocos ou registros com endereços exclusivos, baseado no local físico. O tempo de acesso é variável.
- √ Um exemplo deste tipo de memória são os discos;

Tipos de acessos

✓ Acesso aleatório

- ✓ Cada local endereçável na memória tem um mecanismo de endereçamento exclusivo, fisicamente interligado.
- ✓ O tempo de acesso independe da sequência de acessos anteriores e é constante.
- ✓ Algumas memórias principais e sistemas de cache são de acesso aleatório;

✓ Tempo de acesso (latência)

- ✓ Para a memória de acesso aleatório, esse é o tempo gasto para realizar uma operação de leitura e escrita.
- ✓ para a memória sem acesso aleatório, é o tempo gasto para posicionar o mecanismo de leitura-escrita no local desejado.
- V Tempo de ciclo de memória
 - ✓ é aplicado ao acesso aleatório, sendo o tempo de acesso mais qualquer tempo adicional antes que um segundo acesso possa iniciar.

Taxa de transferência

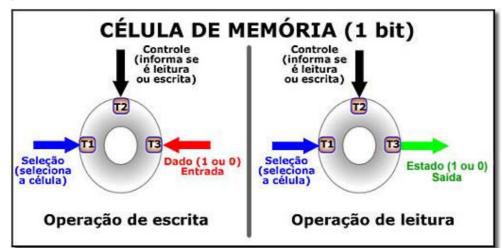
-taxa em que os dados podem ser transferidos para dentro ou fora de uma unidade de memória.

Memórias

✓ Principal

- ✓ A RAM (Random Access Memory) é um tipo de circuito eletrônico de memória que permite a leitura e a escrita de dados em seu interior.
- √ é uma memória volátil
- √ Auxiliar
 - ✓ Sistemas de memória de massa (discos rígidos, CDs-ROM, disquetes, etc.) para armazenarmos dados e programas.

- ✓ São memórias que o processador pode endereçar diretamente, sem as quais o computador não pode funcionar.
- ✓ Elas fornecem geralmente uma ponte para as secundárias, mas a sua função principal é a de conter a informação necessária para o processador num determinado momento.



- ✓ primeiros computadores, as memórias de acesso aleatório eram uma matriz de loops ferromagnéticos em forma de anel (núcleos).
- ✓ Atualmente o uso de chips semicondutores para memória principal é praticamente universal.

Memória principal

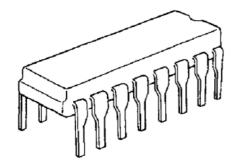
- ✓ Elemento básico:
 - ✓ célula de memória
 - ✓ Dois estados estáveis (ou semiestáveis)
 - ✓ Capazes de serem escritas, para definir o estado
 - ✓ Capazes de serem lidas, para verificar o estado

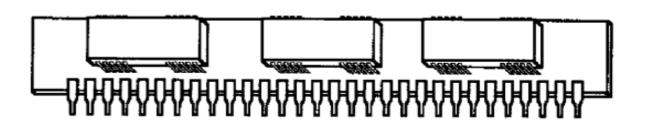
Memórias Semicondutoras

- ✓ RAM
- ✓ SRAM
- ✓ DRAM
- √ SDRAM
- ✓ ROM
- ✓ FLASH
- √ SSD

Memória RAM

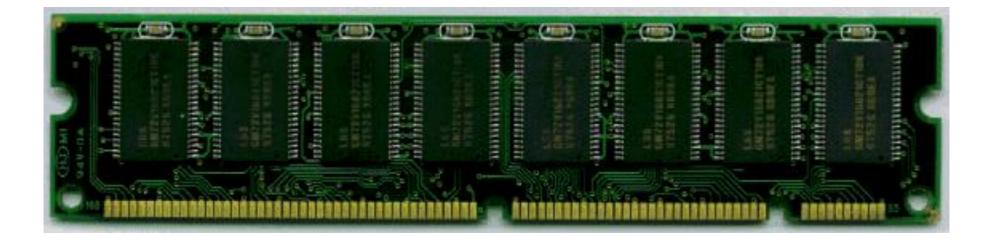
Memória RAM


✓ RAM Dinâmica (DRAM)


- ✓ Células a base de carga de capacitores
- ✓ É necessário um refresh
- ✓ Memória Principal
- ✓ RAM Estática (SRAM)
- ✓ Usa flip-flops com portas lógicas
- ✓ Não é necessário refresh
- V Usada na Memória Cache

DRAM

- √ final dos anos 80,
- √ encapsulamento DIP,
- √ depois surgiu o encapsulamento SIPP
- ✓ Em seguida encapsulamento SIMM.



✓ O SIMM surgiu por volta de 1992

Memória DRAM

SDRAM e DDR

✓ synchronous dynamics random access memory

DDR, DIMM/184

- ✓ mais recentes existem
 - ✓ DDR, DDR2 e DDR3
- ✓ A capacidade é o tamanho de armazenamento que a memória pode ter, atualmente:
 - √ 512MB, 1Gb, 2Gb, 4GB e 8Gb.

double data rate, ou dupla taxa de transferência. Quando o padrão DDR surgiu dobrou a taxa de transferência de dados de então. Depois do DDR, vieram o DDR 2 e o atual DDR 3 - cada número indica que houve a multiplicação por dois da taxa de transferência em relação à geração anterior. Memória com padrão DDR 4 já é uma realidade.

Exemplos: DDR-400, DDR2-667, DDR3-1600,

Nome Padrão	Clock (em MHz)	Dados por segundo (em milhões)	Nome do Modulo	Taxa de Transferência (em MB/s)
DDR-200	100	200	PC-1600	1600
DDR-266	133	266	PC-2100	2100
DDR-300	150	300	PC-2400	2400
DDR-333	166	333	PC-2700	2700
DDR-400	200	400	PC-3200	3200

Nome Padrão	Clock da memória (emMhz)	Dados por segundo (em milhões)	Nome do Modulo	Taxa de Transferência (em MB/s)	Taxa do barramento (em MHz)
DDR2-400	100	400	PC2-3200	3200	200
DDR2-533	133	533	PC2-4200 PC2-4300*	4266	266
DDR2-667	166	666	PC2-5300 PC2-5400*	5333	333
DDR2-800	200	800	PC2-6400	6400	400
DDR2-1066	266	1066	PC2-8500 PC2-8600*	8533	532
DDR2-1300	325	1300	PC2-10400	10400	650

Nome Padrão	Clock da memória (em MHz)	Dados por segundo (em milhões)	Nome do Modulo	Taxa de Transferência (em MB/s)	Taxa do barramento (em MHz)
DDR3-800	100	800	PC3-6400	6400	400
DDR3-1066	133	1066	PC3-8500	8500	532
DDR2-1300	166	1300	PC3-10600	10600	666
DDR2-1600	200	1600	PC3-12800	12800	800

	Frequência real	Frequência DDR	Nome do módulo	Pico de taxa de transferência
DDR3-800	400 MHz	800 MHz	PC3-6400	6.400 MB/s
DDR3-1066	533 MHz	1.066 MHz	PC3-8500	8.533 MB/s
DDR3-1333	666 MHz	1.333 MHz	PC3-10600	10.666 MB/s
DDR3-1600	800 MHz	1.600 MHz	PC3-12800	12.800 MB/s
DDR3-1866	933 MHz	1.866 MHz	PC3-14900	14.933 MB/s
DDR3-2133	1.066 MHz	2.133 MHz	PC3-17000	17.066 MB/s
DDR3-2400	1.200 MHz	2.400 MHz	PC3-19200	19.200 MB/s
DDR3-2600	1.300 MHz	2.600 MHz	PC3-20800	20.800 MB/s
DDR3-2800	1.400 MHz	2.800 MHz	PC3-22400	22.400 MB/s

√ Visando

- ✓ melhorias no consumo de energia
- ✓ aumento de até duas vezes na velocidade de transmissão de dados
- ✓ alteração na densidade para garantir o dobro de memória num mesmo espaço
- ✓ Clocks de 2.133 até 4.266 MHz

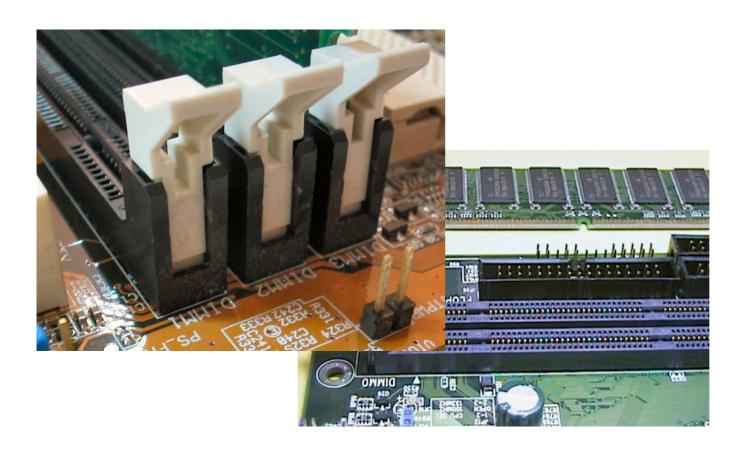
Alimentação:

DDR: 2,5 V

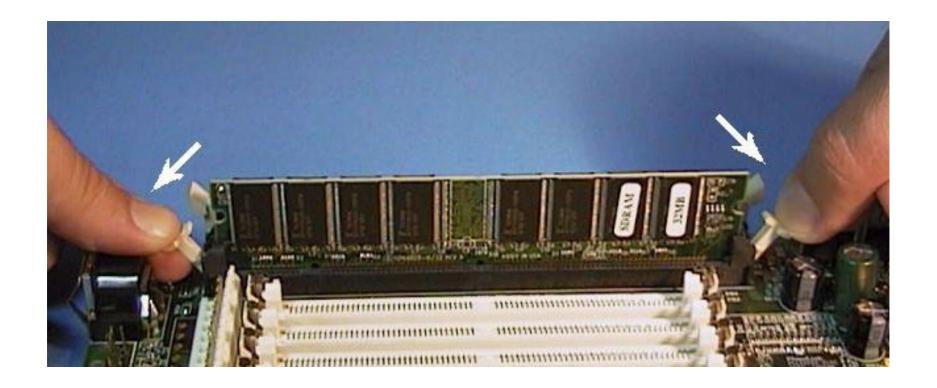
DDR2: 1,8V

DDR3: 1,5 v

DDR4: 1,2V

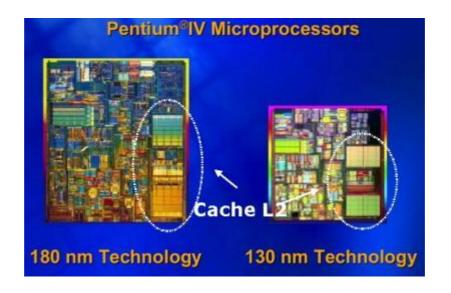


- √ 288 contatos
- ✓ tamanho físico igual
- ✓ redução no espaço entre os componentes metálicos no slot


Slot para as memórias educação, ciência e tecnologia

RIO GRANDE DO NORTE Campus Santa Cruz

RIO GRANDE DO NORTE Campus Santa Cruz


Memórias Cache

Memória Cache;

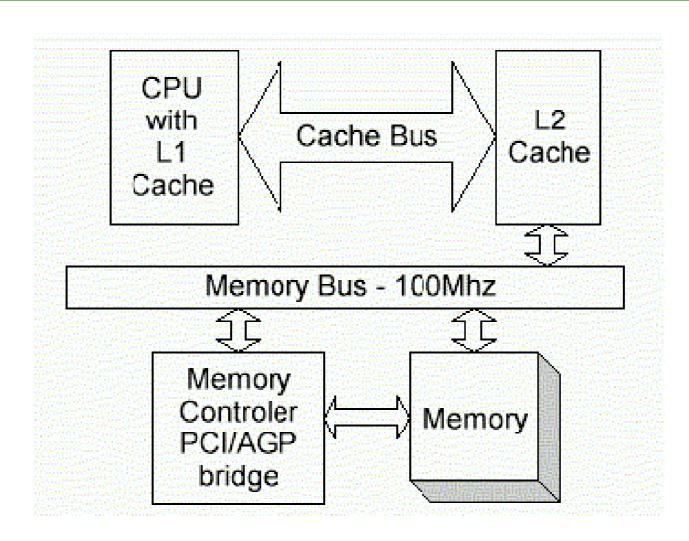
L1;

L2;

L3;

Memórias Cache

- ✓ São as mais rápidas
- ✓ Estão fisicamente no processador:
 - ✓ registradores;
 - √ cache;
 - ✓ L1, L2, L3 ou L4 respectivamente, mais rápidas;
- ✓ serve de intermediário entre o executor e um outro dispositivo;
- √ um bloco de memória para armazenamento temporário;



Memória Cache

- ✓ No processador o principal objetivo de uma cache é acelerar a execução de uma tarefa.
- ✓ Sua utilização pretende evitar o acesso ao dispositivo de armazenamento que é mais lento, armazenando cópia dos dados em meios de acesso mais rápido.
- ✓ mais caro, o recurso mais rápido não pode ser usado para armazenar todas as informações.
- ✓ usa-se a cache para armazenar apenas as informações mais frequentemente utilizadas.

Memórias Cache

Memória Cache

Lógica de uso da cache:

- ✓ Intel Corese a cache possuir capacidade de armazenamento limitada (custo), e se não houver mais espaço para armazenar o novo dado, é necessário liberar espaço;
- ✓ a forma utilizada para selecionar o elemento a ser retirado é chamada de política de troca (replacement policy).
- √ i7-5775C com 128 MB de cache L4

Memória ROM

✓ A memória ROM (Read Only Memory) é um circuito eletrônico de memória onde os seus dados não podem ser modificados, isto é, o seu conteúdo é sempre o mesmo.

✓ Não volátil.

Função da ROM

- √ dar a partida no micro
 - ✓ Programa gravado em uma memória ROM, que está localizada na placa-mãe do computador.
- ✓ Ao ligar o micro, o processador lê e executa o programa que está localizado na memória ROM do computador.
- ✓ Um programa (software) armazenado em ROM, recebe o nome de firmware.

Dentro da ROM

✓ três programas (firmwares):

- ✓ 1. BIOS (Basic Input/Output System): "Ensina" o processador a trabalhar com os periféricos mais básicos do sistema.
- ✓ 2. POST (Power-On Self-Test): Um autoteste feito sempre que ligamos o micro.
 - ✓ Identifica a configuração instalada.
 - ✓ Inicializa todos os circuitos periféricos de apoio (chipset) da placa-mãe.
 - ✓ Inicializa o vídeo, Testa a memória, Testa o teclado.
 - ✓ Carrega o S.O. para a memória.
 - ✓ Entrega o controle do microprocessador S.O.

Dentro da ROM

- ✓ 3. Setup (Configuração): Programa de configuração de hardware do microcomputador.
- ✓ Chamamos esse programa apertando um conjunto de teclas durante o POST (geralmente basta pressionar a tecla Del) durante a contagem de memória; esse procedimento, contudo, pode variar de acordo com o fabricante da placamãe).

Existem periféricos que também têm memória ROM, como: placa de vídeo.

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA RIO GRANDE DO NORTE Campus Santa Cruz

Teste de memória

Phoenix - AwardBIOS v6.88PC, An Energy Star Alty Copyright (C) 1984-2885, Phoenix Technologies, LTD

ASUS AGN-SLI Promium ACPI BIOS Revision 1011-001

Main Processor: AMD Athlon(ta) 54 Processor 4868.

Monory Testing | 2007152K OK(Installed Monory: 2007152K)

Monory information: DDR 488 Dual Channel, 128-bit

Chipset Model: nForce 4

Primary IDE Master | PLEXTOR DUDR PX-716AL 1.82

Primary IDE Stave : None

Secondary IDE Master : CD-W524E 1.8E

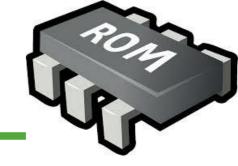
Secondary IDE Stave | Hone

Press F1 to continue, DEL to enter SETUP 12/87/2005-NF-CXX004-RXMSLI-P-00

Setup

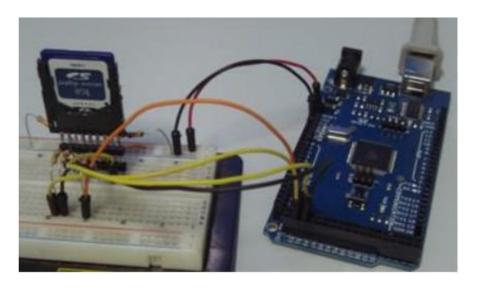
Atualização de BIOS

O processo de upgrade de BIOS consiste em trocar o conteúdo da memória ROM da placa-mãe. Esse procedimento é útil em diversas situações. A maneira com que o upgrade de BIOS é feito depende da tecnologia usada pelo circuito de memória ROM do micro, Flash ROM ou Mask ROM.


Tipos de ROM

- ✓ Pode ser escrita eletricamente apenas uma vez.
- ✓ Precisa de equipamento para a programação.
- ✓ ROM programável e apagável (EPROM)
 - ✓ Ler e grava eletricamente.
 - ✓ As células são apagados através da exposição à luz ultravioleta intensa.

Tipos de ROM


apagável

- ✓ ROM programável e eletronicamente (EEPROM)
 - ✓ Escrita pode ser feita somente nos bytes endereçados, sem modificar os demais.
 - ✓ Mais cara que a EPROM e menos densa.
- √ Flash
 - ✓ Intermediária entre a EPROM e EEPROM
 - ✓ Usa tecnologia elétrica de apagamento.
 - ✓ Maior capacidade de armazenamento

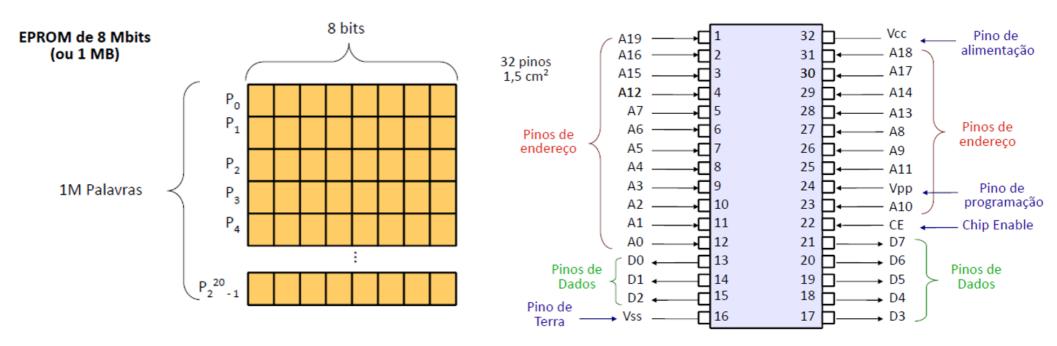
Tipos de ROM

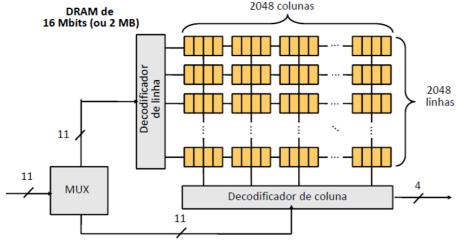
Flash ROM

Flash

- ✓ cartões de memória, pen drives, MP3 Players, câmeras digitais e celulares.
- √ tempo de acesso rápido e melhor resistência que Hds
- ✓ Solid-State Drive SSD Sem mecânica e não volátil.
- ✓ O disco SDD usa memória flash para armazenamento
- ✓ Em cartões de memória, são extremamente duráveis.

HDD




SSD

Arranjo físico

RIO GRANDE DO NORTE Campus Santa Cruz

Memória Auxiliar

HD

DVD

Blue Ray

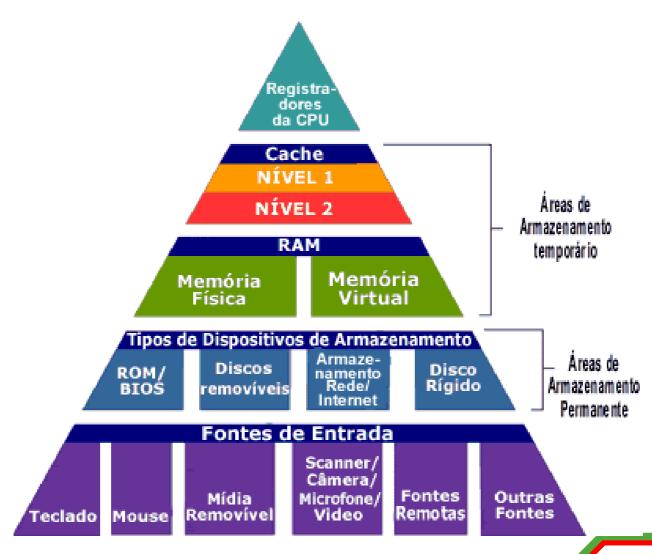
Disquetes

Fitas magnéticas

CDROM

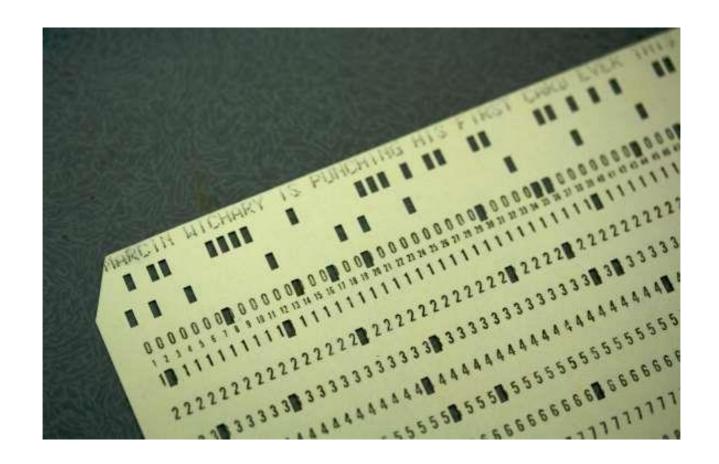
• • •

Memórias portáteis


Campus Santa Cruz

Comparativos Memórias

Cartão Perfurado


Uma das primeiras formas de armazenar dados nesse universo foi com cartões perfurados, criados em 1725 por Basile Bouchon e aperfeiçoados por Herman Hollerith.

Os cartões perfurados armazenam informações simples por meio de buracos estrategicamente posicionados.

Quando interpretados por uma máquina, esses furos são decodificados em dados;

Essa tecnologia foi usada até meados do século XX,

Fita Magnética

Surgiu já no início dos anos 50;

Era uma fita plástica coberta com óxido magnético, capaz de armazenar informações;

As fitas magnéticas, precursoras das fitas cassete, foram responsáveis por uma grande revolução na indústria fonográfica.

O primeiro computador a utilizar as fitas, o UNIVAC.

Fita Magnética

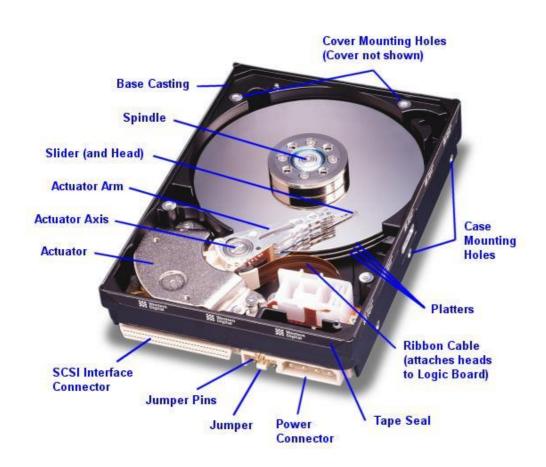
Disquetes

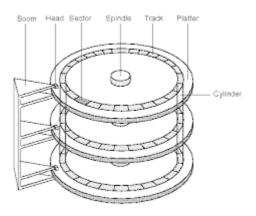
Os primeiros modelos de disquetes surgiram nos anos 70;

Eram muito frágeis e os dados se perdiam com facilidade, especialmente pela construção maleável dos disquetes, que facilitavam a ruptura dos filamentos magnéticos que armazenavam as informações.

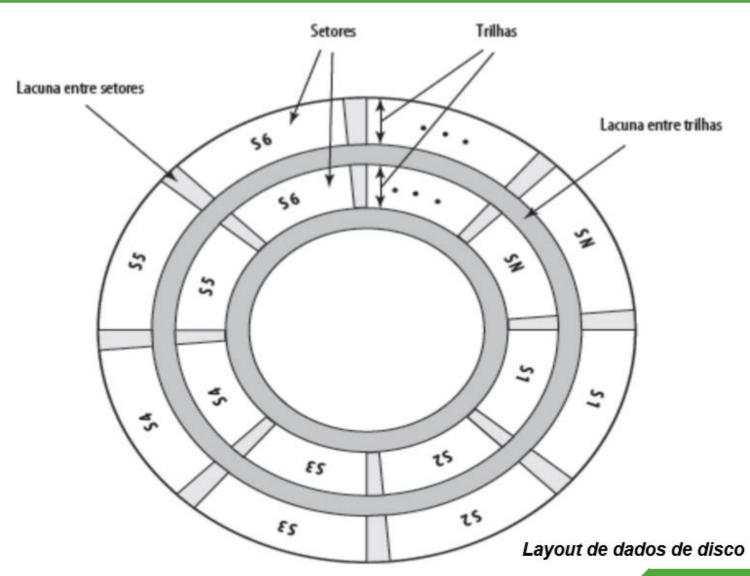
Existian versões com capacidade de 1,2 MB e 1.44MB.

Disquetes




HD

- A cabeça é um dispositivo pequeno capaz de ler e escrever em uma parte do prato girando por baixo dela.
- ✓ Organização dos dados no prato em um conjunto concêntricos de anéis (trilhas).
- ✓ As trilhas adjacentes são separadas por lacunas e existem milhares de trilhas por superfície.
- ✓ Os dados são transferidos de e para o disco em setores, que pode ser variável, mas normalmente é fixo em 512 bytes.
- ✓ Existem centenas de setores por trilhas.



CDROM

√ 650 Mb

- ✓ policarbonato, revestido com uma superfície de alto índice de reflexão (alumínio, tipicamente).
- ✓ Informações (dados ou músicas) gravadas na superfície como uma série de sulcos microscópicos.
- ✓ Superfície sulcada é protegida contra pó e arranhões por uma cobertura de laca ou verniz clara.

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA RIO GRANDE DO NORTE Campus Santa Cruz

DVD

- ✓ Bits são mais próximos aos outros, quando comparado a um CD.
- ✓ capacidade de armazenamento (≈ 4,7 GB)
- ✓ Utiliza uma segunda camada (semirefletora)
- ✓ Camada dupla
 - ✓ primeira camada (completamente refletora).
 - ✓ Laser pode ajustar o foco e atingir cada camada separadamente.
 - ✓ a capacidade total (≈ 8,5 GB)

DVD e Blue Ray

✓ DVD:

- ✓ 15 GB de único lado, única camada.
- ✓ Blue-ray:
 - ✓ Camada de dados mais próxima do laser.
 - ✓ Foco mais estreito
 - ✓ 25 GB em única camada.
 - ✓ Disponível para apenas leitura (BD-ROM), regravável uma vez (BR-R) e re-regravável (BR-RE).