The
Pragmatic
ogramimers

N

ileWeb
evelo ment
ails 4

Sam Ruby
Dave Thomas
David Heinemeier Hansson

Edited by Susannah Davidson Pfalzer

The Facets 73 of Ruby Series

Early praise for Agile Web Development with Rails 4

Agile Web Development with Rails is the Rails way to build real-world web apps—it’s
definitive. Rails itself relies on this book as a test suite. Rails moves fast and
AWDWR is always there, a backstage pass to the very latest.

>» Jeremy Kemper
Member of the Rails core team

This is an excellent way to quickly get up and running with Ruby and Rails. The
book is so good that Sam Ruby should change his name to Sam Rails.

» Aaron Patterson
Member of the Ruby and Rails core teams

Like many, I started out with Ruby by reading an earlier version of Agile Web
Development with Rails. Many years (and a few updates) later, it’s still as good a
resource for learning Rails as it has ever been, and this edition brings it right up
to date with Rails 4.

» Stephen Orr
Lead developer, Made Media

Agile Web Development with Rails 4

Sam Ruby
Dave Thomas
David Heinemeier Hansson

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http:/pragprog.com.

The team that produced this book includes:

Susannah Pfalzer (editor)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2013 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-56-7

Printed on acid-free paper.

Book version: P1.0—September 2013

http://pragprog.com

Acknowledgments

Introduction

Part | — Getting Started

Installing Rails .

1.1 Installing on Windows

1.2 Installing on Mac OS X

1.3 Installing on Linux

1.4 Choosing a Rails Version

1.5 Setting Up Your Development Environment
1.6 Rails and Databases

Instant Gratification .
2.1 Creating a New Application
2.2 Hello, Rails!

2.3 Linking Pages Together

The Architecture of Rails Applications .
3.1 Models, Views, and Controllers

3.2 Rails Model Support

3.3 Action Pack: The View and Controller

Introduction to Ruby e e
4.1 Ruby Is an Object-Oriented Language
4.2 Data Types

4.3 Logic

4.4 Organizing Structures

4.5 Marshaling Objects

4.6 Pulling It All Together

4.7 Ruby Idioms

Contents

ix

Xi

© 00 OB W

12

15
15
17
24

29
29
32
34

37
37
39
43
45
48
49
50

10.

11.

Contents * vi

Part Il — Building an Application

The Depot Application .

Iteration Al: Creating the Products Maintenance

5.1 Incremental Development
5.2 What Depot Does
5.3 Let's Code
Task A: Creating the Application
6.1
Application
6.2 Iteration A2: Making Prettier Listings
Task B: Validation and Unit Testing
7.1 [Iteration B1: Validating!
7.2 Iteration B2: Unit Testing of Models
Task C: Catalog Display . .
8.1 [Iteration C1: Creating the Catalog Llstlng
8.2 Iteration C2: Adding a Page Layout
8.3 Iteration C3: Using a Helper to Format the Price
8.4 Iteration C4: Functional Testing of Controllers
8.5 Iteration C5: Caching of Partial Results
Task D: Cart Creation
9.1 Iteration D1: Finding a Cart
9.2 Iteration D2: Connecting Products to Carts
9.3 Iteration D3: Adding a Button
Task E: A Smarter Cart
10.1 Iteration E1: Creating a Smarter Cart
10.2 Iteration E2: Handling Errors
10.3 Iteration E3: Finishing the Cart
Task F: Add a Dash of Ajax
11.1 Iteration F1: Moving the Cart
11.2 Iteration F2: Creating an Ajax-Based Cart
11.3 Iteration F3: Highlighting Changes

11.4
11.5
11.6

Iteration F4: Hiding an Empty Cart
Iteration F5: Making Images Clickable
Testing Ajax Changes

55
55
56
60

61

61
68

77
77
82

91
91
96
100
101
104

107
107
108
110

119
119
124
128

135
136
142
146
149
152
154

12.

13.

14.

15.

16.

17.

18.

19.

Contents *® vii

Task G: Check Out! 159
12.1 Iteration G1: Capturmg an Order 159
12.2 Iteration G2: Atom Feeds 172
Task H: Sending Mail . ce e 177
13.1 Iteration H1: Sending Confirmation Emails 177
13.2 Iteration H2: Integration Testing of Applications 184
Task I: Logging In 191
14.1 Iteration I1: Adding Users 191
14.2 Iteration I2: Authenticating Users 197
14.3 Iteration I3: Limiting Access 202
14.4 Iteration I4: Adding a Sidebar, More Administration 204
Task J: Internationalization 211
15.1 Iteration J1: Selecting the Locale 211
15.2 Iteration J2: Translating the Storefront 215
15.3 Iteration J3: Translating Checkout 222
15.4 Iteration J4: Add a Locale Switcher 229
Task K: Deployment and Production 233
16.1 Iteration Kl: Deploying with Phusmn Passenger and
MySQL 234
16.2 Iteration K2: Deploying Remotely with Capistrano 242
16.3 Iteration K3: Checking Up on a Deployed Application 248
Depot Retrospective 253
17.1 Rails Concepts 253
17.2 MWhat We Have Done 256
Part lll — Rails in Depth
Finding Your Way Around Rails 261
18.1 Where Things Go 261
18.2 Naming Conventions 270
Active Record .. 275
19.1 Defining Your Data 275
19.2 Locating and Traversing Records 280
19.3 Creating, Reading, Updating, and Deleting (CRUD) 284
19.4 Participating in the Monitoring Process 298
19.5 Transactions 304

20.

21.

22.

23.

24.

25.

26.

Al.

Action Dispatch and Action Controller

20.1
20.2
20.3

Dispatching Requests to Controllers
Processing of Requests
Objects and Operations That Span Requests

Action View

21.1
21.2
21.3
21.4
21.5
21.6

Using Templates

Generating Forms

Processing Forms

Uploading Files to Rails Applications

Using Helpers

Reducing Maintenance with Layouts and Partials

Migrations

22.1
22.2
22.3
22.4
22.5
22.6

Creating and Running Migrations
Anatomy of a Migration

Managing Tables

Advanced Migrations

When Migrations Go Bad

Schema Manipulation Outside Migrations

Nonbrowser Applications .

23.1
23.2

A Stand-Alone Application Usmg Active Recorcl
A Library Function Using Active Support

Rails’ Dependencies

24.1
24.2
24.3
24.4
24.5
24.6

Generating XML with Bullder

Generating HTML with ERB

Managing Dependencies with Bundler
Interfacing with the Web Server with Rack
Automating Tasks with Rake

Survey of Rails’ Dependencies

Rails Plugins .

25.1
25.2
25.3
25.4

Credit Card Processmg \mth Actlve Merchant
Beautifying Our Markup with Haml
Pagination

Finding More at RailsPlugins.org

Where to Go from Here

Bibliography

Index

Contents * viii

309
309
319
330

341
341
343
346
348
351
358

367
367
370
375
379
382
383

385
385
386

393
393
395
397
400
404
405

411
411
413
416
418

421
423
425

Acknowledgments

Rails is constantly evolving and, as it does, so has this book. Parts of the
Depot application were rewritten several times, and all of the narrative was
updated. The avoidance of features as they become deprecated have repeat-
edly changed the structure of the book as what was once hot became just
lukewarm.

So, this book would not exist without a massive amount of help from the
Ruby and Rails communities. To start with, we had a number of incredibly
helpful formal reviewers of drafts of this book.

Jeremy Anderson Andrea Barisone Ken Coar

Jeft Cohen Joel Clermont Geoff Drake
Jeremy Frens Pavan Gorakavi Michael Jurewitz
Mikel Lindsaar Nigel Lowry Stephen Orr
Aaron Patterson Paul Rayner Martijn Reuvers
Doug Rhoten Gary Sherman Tibor Simic

Gianluigi Spagnuolo Davanum Srinivas Charley Stran

Federico Tomassetti Stefan Turalski José Valim

Additionally, each edition of this book has been released as a beta book:
early versions were posted as PDFs, and people made comments online. And
comment they did; over time more than 1,000 suggestions and bug reports
were posted. The vast majority ended up being incorporated, making this
book immeasurably more useful than it would have been. While thanks go
out to all for supporting the beta book program and for contributing so much
valuable feedback, a number of contributors went well beyond the call of
duty.

Manuel E. Vidaurre Arenas Seth Arnold
Will Bowlin Andy Brice

Jason Catena Victor Marius Costan

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Acknowledgments ¢ x

David Hadley Jason Holloway
David Kapp Trung LE
Kristian Riiber Mandrup mltsy

Steve Nicholson Jim Puls
Johnathan Ritzi Leonel S

Kim Shrier Don Smith

Joe Straitiff Martin Zoller

Finally, the Rails core team has been incredibly helpful, answering questions,
checking out code fragments, and fixing bugs—even to the point where part
of the release process includes verifying that new releases of Rails don’t break
the examples provided in this book." A big “thank you” to the following:

Rafael Franca (rafaelfranca) Guillermo Iguaran (guilleiguaran)
Jeremy Kemper (bitsweat) Yehuda Katz (wycats)

Michael Koziarski (nzkoz) Santiago Pastorino (spastorino)
Aaron Patterson José Valim (josevalim)

Sam Ruby

rubys@intertwingly.net
August 2013

1. https://github.com/rails/rails/blob/master/RELEASING_RAILS.rdoc#is-sam-ruby-
happy--if-not-make-him-happy

https://github.com/rails/rails/blob/master/RELEASING_RAILS.rdoc#is-sam-ruby-happy--if-not-make-him-happy
https://github.com/rails/rails/blob/master/RELEASING_RAILS.rdoc#is-sam-ruby-happy--if-not-make-him-happy
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Introduction

Ruby on Rails is a framework that makes it easier to develop, deploy, and
maintain web applications. During the months that followed its initial release,
Rails went from being an unknown toy to being a worldwide phenomenon;
more important, it has become the framework of choice for the implementation
of a wide range of so-called Web 2.0 applications.

Why is that?

Rails Simply Feels Right

A large number of developers were frustrated with the technologies they were
using to create web applications. It didn’t seem to matter whether they used
Java, PHP, or .NET—there was a growing sense that their jobs were just too
damn hard. And then, suddenly, along came Rails, and Rails was easier.

But easy on its own doesn’t cut it. We're talking about professional developers
writing real-world websites. They wanted to feel that the applications they
were developing would stand the test of time—that they were designed and
implemented using modern, professional techniques. So, these developers
dug into Rails and discovered it wasn'’t just a tool for hacking out sites.

For example, all Rails applications are implemented using the Model-View-
Controller (MVC) architecture. Java developers are used to frameworks such
as Tapestry and Struts, which are based on MVC. But Rails takes MVC further:
when you develop in Rails, you start with a working application, there’s a
place for each piece of code, and all the pieces of your application interact in
a standard way.

Professional programmers write tests. And again, Rails delivers. All Rails
applications have testing support baked right in. As you add functionality to
the code, Rails automatically creates test stubs for that functionality. The
framework makes it easy to test applications, and as a result, Rails applica-
tions tend to get tested.

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Introduction * xii

Rails applications are written in Ruby, a modern, object-oriented scripting
language. Ruby is concise without being unintelligibly terse—you can express
ideas naturally and cleanly in Ruby code. This leads to programs that are
easy to write and (just as important) are easy to read months later.

Rails takes Ruby to the limit, extending it in novel ways that make a program-
mer’s life easier. This makes our programs shorter and more readable. It also
allows us to perform tasks that would normally be done in external configu-
ration files inside the codebase instead. This makes it far easier to see what’s
happening. The following code defines the model class for a project. Don’t
worry about the details for now. Instead, just think about how much informa-
tion is being expressed in a few lines of code.

class Project < ActiveRecord: :Base
belongs to :portfolio

has _one :project manager
has_many :milestones
has_many :deliverables, through: milestones

validates :name, :description, presence: true
validates :non disclosure agreement, acceptance: true
validates :short name, uniqueness: true

end

Two other philosophical underpinnings keep Rails code short and readable:
DRY and convention over configuration. DRY stands for don’t repeat yourself.
Every piece of knowledge in a system should be expressed in just one place.
Rails uses the power of Ruby to bring that to life. You’ll find very little dupli-
cation in a Rails application; you say what you need to say in one place—a
place often suggested by the conventions of the MVC architecture—and then
move on. For programmers used to other web frameworks, where a simple
change to the schema could involve a dozen or more code changes, this was
a revelation.

Convention over configuration is crucial, too. It means that Rails has sensible
defaults for just about every aspect of knitting together your application.
Follow the conventions, and you can write a Rails application using less code
than a typical Java web application uses in XML configuration. If you need
to override the conventions, Rails makes that easy, too.

Developers coming to Rails found something else, too. Rails doesn’t merely
play catch-up with the de facto web standards; it helps define them. And
Rails makes it easy for developers to integrate features such as Ajax and
RESTful interfaces into their code because support is built in. (And if you're
not familiar with Ajax and REST interfaces, never fear—we’ll explain them
later in the book.)

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Introduction * xiii

Developers are worried about deployment too. They found that with Rails you
can deploy successive releases of your application to any number of servers
with a single command (and roll them back equally easily should the release
prove to be somewhat less than perfect).

Rails was extracted from a real-world, commercial application. It turns out
that the best way to create a framework is to find the central themes in a
specific application and then bottle them up in a generic foundation of code.
When you're developing your Rails application, you're starting with half of a
really good application already in place.

But there’s something else to Rails—something that's hard to describe.
Somehow, it just feels right. Of course, you’ll have to take our word for that
until you write some Rails applications for yourself (which should be in the
next forty-five minutes or so...). That’s what this book is all about.

Rails Is Agile

The title of this book is Agile Web Development with Rails 4. You may be
surprised to discover that we don’t have explicit sections on applying agile
practices X, Y, and Z to Rails coding.

The reason is both simple and subtle. Agility is part of the fabric of Rails.

Let’s look at the values expressed in the Agile Manifesto as a set of four
preferences.’

¢ Individuals and interactions over processes and tools
e Working software over comprehensive documentation
e Customer collaboration over contract negotiation

e Responding to change over following a plan

Rails is all about individuals and interactions. There are no heavy toolsets,
no complex configurations, and no elaborate processes. There are just small
groups of developers, their favorite editors, and chunks of Ruby code. This
leads to transparency; what the developers do is reflected immediately in
what the customer sees. It's an intrinsically interactive process.

Rails doesn’t denounce documentation. Rails makes it trivially easy to create
HTML documentation for your entire codebase. But the Rails development
process isn’t driven by documents. You won't find 500-page specifications at
the heart of a Rails project. Instead, you'll find a group of users and developers

1. http://agilemanifesto.org/. Dave Thomas was one of the seventeen authors of this
document.

http://agilemanifesto.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Introduction ® xiv

jointly exploring their need and the possible ways of answering that need.
You'll find solutions that change as both the developers and the users become
more experienced with the problems they're trying to solve. Youll find a
framework that delivers working software early in the development cycle. This
software may be rough around the edges, but it lets the users start to get a
glimpse of what you’ll be delivering.

In this way, Rails encourages customer collaboration. When customers see
just how quickly a Rails project can respond to change, they start to trust
that the team can deliver what’s required, not just what has been requested.
Confrontations are replaced by “What if?” sessions.

That’s all tied to the idea of being able to respond to change. The strong,
almost obsessive, way that Rails honors the DRY principle means that changes
to Rails applications impact a lot less code than the same changes would in
other frameworks. And since Rails applications are written in Ruby, where
concepts can be expressed accurately and concisely, changes tend to be
localized and easy to write. The deep emphasis on both unit and functional
testing, along with support for test fixtures and stubs during testing, gives
developers the safety net they need when making those changes. With a good
set of tests in place, changes are less nerve-racking.

Rather than constantly trying to tie Rails processes to the agile principles,
we've decided to let the framework speak for itself. As you read through the
tutorial chapters, try to imagine yourself developing web applications this
way, working alongside your customers and jointly determining priorities and
solutions to problems. Then, as you read the more advanced concepts that
follow in Part III, see how the underlying structure of Rails can enable you to
meet your customers’ needs faster and with less ceremony.

One last point about agility and Rails is that although it’s probably unprofes-
sional to mention this, think how much fun the coding will be!

Who This Book Is For

This book is for programmers looking to build and deploy web-based applica-
tions. This includes application programmers who are new to Rails (and
perhaps even new to Ruby) and ones who are familiar with the basics but
want a more in-depth understanding of Rails.

We presume some familiarity with HTML, Cascading Style Sheets (CSS), and
JavaScript, in other words, the ability to view source on web pages. You need
not be an expert on these subjects; the most you will be expected to do is to
copy and paste material from the book, all of which can be downloaded.

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Introduction * xv

How to Read This Book

The first part of this book makes sure you are ready. By the time you are
done with it, you will have been introduced to Ruby (the language), you will
have been exposed to an overview of Rails, you will have Ruby and Rails
installed, and you will have verified the installation with a simple example.

The next part takes you through the concepts behind Rails via an extended
example; we build a simple online store. It doesn’t take you one by one through
each component of Rails (“here is a chapter on models, here is a chapter on
views,” and so forth). These components are designed to work together, and
each chapter in this section tackles a specific set of related tasks that involve
a number of these components working together.

Most folks seem to enjoy building the application along with the book. If you
don’t want to do all that typing, you can cheat and download the source code
(a compressed tar archive or a zip file).> This download contains separate sets
of source code for Rails 3.0, Rails 3.1, Rails 3.2, and Rails 4.0. As you will be
using Rails 4.0, the files you want are in the rails40 directory. See the README-
FIRST file for more details.

Be careful if you ever choose to copy files directly from the download into your
application, as the server won’'t know that it needs to pick up these changes
if the timestamps on the file are old. You can update the timestamps using
the touch command on either Mac OS X or Linux, or you can edit the file and
save it. Alternately, you can restart your Rails server.

Part III, Rails in Depth, on page 259 surveys the entire Rails ecosystem. This
starts with the functions and facilities of Rails that you will now be familiar
with. It then covers a number of key dependencies that the Rails framework
makes use of that contribute directly to the overall functionality that the Rails
framework delivers. Finally, there is a survey of a number of popular plugins
that augment the Rails framework and make Rails an open ecosystem rather

than merely a framework.
Along the way, you'll see various conventions we've adopted.

Ruby Tips
Although you need to know Ruby to write Rails applications, we realize
that many folks reading this book will be learning both Ruby and Rails
at the same time. You will find a (very) brief introduction to the Ruby
language in Chapter 4, Introduction to Ruby, on page 37. When we use a

2. http://pragprog.com/titles/rails4/source_code has the links for the downloads.

http://pragprog.com/titles/rails4/source_code
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

‘name

<> on page 38

Introduction ® xvi

Ruby-specific construct for the first time, we’ll cross-reference it to that
chapter.

For example, this paragraph contains a gratuitous use of :name, a Ruby
symbol. In formats that support margins, you'll see a reference to where
symbols are explained.

Live Code

Most of the code snippets we show come from full-length, running exam-
ples that you can download.

To help you find your way, if a code listing can be found in the download,
there’ll be a bar before the snippet (just like the one here).

Download rails40/demo1/app/controllers/say_controller.rb
class SayController < ApplicationController
def hello
end

def goodbye
end
end

This contains the path to the code within the download. If you're reading
the ebook version of this book and your ebook viewer supports hyperlinks,
you can click the bar, and the code should appear in a browser window.
Some browsers may mistakenly try to interpret some of the HTML tem-
plates as HTML. If this happens, view the source of the page to see the
real source code.

And in some cases involving the modification of an existing file where the
lines to be changed may not be immediately obvious, you will also see
some helpful little triangles on the left of the lines that you will need to
change. Two such lines are indicated in the previous code.

David Says...

Every now and then you’ll come across a “David Says...” sidebar. Here’s
where David Heinemeier Hansson gives you the real scoop on some par-
ticular aspect of Rails—rationales, tricks, recommendations, and more.
Because he’s the fellow who invented Rails, these are the sections to read
if you want to become a Rails pro.

Joe Asks...

Joe, the mythical developer, sometimes pops up to ask questions about
stuff we talk about in the text. We answer these questions as we go along.

http://media.pragprog.com/titles/rails4/code/rails40/demo1/app/controllers/say_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Introduction ® xvii

This book isn’t meant to be a reference manual for Rails. Our experience is
that reference manuals are not the way most people learn. Instead, we show
most of the modules and many of their methods, either by example or narra-
tively in the text, in the context of how these components are used and how
they fit together.

Nor do we have hundreds of pages of API listings. There’s a good reason for
this—you get that documentation whenever you install Rails, and it's guaran-
teed to be more up-to-date than the material in this book. If you install Rails
using RubyGems (which we recommend), simply start the gem documentation
server (using the command gem server), and you can access all the Rails APIs
by pointing your browser at http://localhost:8808. You will find out in A Place for
Documentation, on page 265 how to build even more documentation and guides.

In addition, you will see that Rails helps you by producing responses that
clearly identify any error found, as well as traces that tell you not only the
point at which the error was found but also how you got there. You can see
an example in Figure 25, Our application spills its guts., on page 124. If you
need additional information, peek ahead to Section 10.2, Iteration E2: Handling
Errors, on page 124 to see how to insert logging statements.

Should you get really stuck, there are plenty of online resources to help. In
addition to the code listings mentioned, there is a forum,’ where you can ask
questions and share experiences; an errata page,* where you can report bugs;
and a wiki,® where you can discuss the exercises found throughout the book.

These resources are shared resources. Feel free to post not only questions
and problems to the forum and wiki but also any suggestions and answers
you may have to questions that others may have posted.

Let’s get started! The first steps are to install Ruby and Rails and to verify
the installation with a simple demonstration.

3. http://forums.pragprog.com/forums/148
4. http://www.pragprog.com/titles/rails4/errata
5. http://www.pragprog.com/wikis/wiki/RailsPlayTime

http://forums.pragprog.com/forums/148
http://www.pragprog.com/titles/rails4/errata
http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Part I

Getting Started

In this chapter, we'll see
- installing Ruby, RubyGems, SQLite3, and Rails; and
« development environments and tools.

CHAPTER 1

Installing Rails

In Part I of this book, we’ll introduce you to both the Ruby language and the
Rails framework. But we can’t get anywhere until you've installed both and
verified that they are operating correctly.

To get Rails running on your system, you'll need the following:

* A Ruby interpreter. Rails is written in Ruby, and you’ll be writing your
applications in Ruby too. Rails 4.0 recommends Ruby version 2.0.0 but
will run on 1.9.3. It will not work on Ruby versions 1.8.7 or Ruby 1.9.2.

e Ruby on Rails. This book was written using Rails version 4.0 (specifically
Rails 4.0.0).

e A JavaScript interpreter. Both Microsoft Windows and Mac OS X have
JavaScript interpreters built in, and Rails will use the version already on
your system. On other operating systems, you may need to install a
JavaScript interpreter separately.

¢ Some libraries, depending on the operating system.
e A database. We're using both SQLite 3 and MySQL 5.5 in this book.

For a development machine, that’s about all you’ll need (apart from an editor,
and we’ll talk about editors separately). However, if you are going to deploy
your application, you will also need to install a production web server (as a
minimum) along with some support code to let Rails run efficiently. We have
a whole chapter devoted to this, starting in Chapter 16, Task K: Deployment
and Production, on page 233, so we won'’t talk about it more here.

So, how do you get all this installed? It depends on your operating system....

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

1.1

1.2

Chapter 1. Installing Rails * 4

Installing on Windows

The easiest way to install Rails on Windows is by using the RailsInstaller'
package. At the time of this writing, the latest version of RailsInstaller is
version 2.2.1, which includes Ruby 1.9.3 and Rails 3.2. Until a new version
is released that supports Rails 4.0.0 or Ruby 2.0, feel free to use version 2.1
of RailsInstaller to get you started.

Base installation is a snap. After you download, click Run and then click
Next. Select “I accept all of the Licenses” (after reading them carefully of
course) and then click Next, Install, and Finish.

This opens a command window and prompts you for your name and email.
This is only to set up the git version control system. For the purposes of the
exercises in this book, you won’t need to worry about the ssh key that is
generated.

Close this window and open a new command prompt. On Windows 8, type
cmd on the tile-based Start screen and press Enter. On versions of Windows
prior to Windows 8, select Windows Start, select Run..., enter cmd, and click
OK.

Windows 8 users need to perform the additional step of installing node.js.”
Once this is complete, close the command window and open a new one for
the changes to %PATH% to take effect. Verify that the installation is correct by
entering the command node -v.

If you have trouble, try looking for suggestions on the Troubleshooting page
on the RubyInstaller site.”

As long as the version of RailsInstaller you used installed a version of Ruby
that is 1.9.3 or greater, there is no need to upgrade to a newer version of
Ruby. Please skip to Section 1.4, Choosing a Rails Version, on page 8 to
ensure that the version of Rails you have installed matches the version
described in this edition. See you there.

Installing on Mac OS X

Since Mac OS X ships with Ruby 1.8.7, you’ll need to download a newer ver-
sion of Ruby that works with Rails 4.0. The easiest way to do this is to use
RailsInstaller, which at the time of this writing installs Ruby 1.9.3. A second

1. http://railsinstaller.org/
2. http://nodejs.org/download/
3. https://github.com/oneclick/rubyinstaller /wiki/Troubleshooting

http://railsinstaller.org/
http://nodejs.org/download/
https://github.com/oneclick/rubyinstaller/wiki/Troubleshooting
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Installingon MacOSX ¢ 5

way to do this is to use the newest development version of RVM, which you
can use to install Ruby 2.0.0. Ruby 2.0 is what the Rails core team recom-
mends and is noticeably faster than Ruby 1.9.3, but either can be used with
this book. Both approaches are described here. The choice is up to you.

Before you start, go to your Utilities folder and drag the Terminal application
onto your dock. You'll be using this during the installation and then frequently
as a Rails developer.

Installing via RailsInstaller

Start by going to the RailsInstaller® and clicking the big green Download the
Kit button.

Once the download is complete, double-click the file to uncompress it. Before
clicking the app file that is produced, hold down the Control key. Select the
“open” option. Opening the app in this way gives you the option to install a
program from a developer who isn’t known to the app store. From here there
are a few questions (such as your name, which will be used to configure git),
and installation will proceed.

Now open the Terminal application, and at the prompt enter the following
command:

$ ruby -v
You should see the following result:
ruby 1.9.3p392 (2013-02-22 revision 39386) [x86_64-darwinll.4.0]

Next, update Rails to the version used by this book with the following
command:

$ gem install rails --version 4.0.0 --no-ri --no-rdoc

You're ready to go! Skip forward to join the Windows users in Section 1.4,
Choosing a Rails Version, on page 8.

Installing Using RVM

First, download and install the latest (January 2013) Command Line Tools
for Xcode for your operating system (OS X Lion or OS X Mountain Lion) using
the "Downloads" preference pane within XCode.

Now open the Terminal application, and at the prompt enter the following
command to install the development version of RVM:

4. http://railsinstaller.org/

http://railsinstaller.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

1.3

Chapter 1. Installing Rails ¢ 6

$ curl -L https://get.rvm.io | bash -s stable
Check for, and follow, any upgrade notes in the output from that command.

Once you complete those instructions, you can proceed to install the Ruby
interpreter.

$ rvm install 2.0.0 --autolibs=enable

The preceding step will take a while as it downloads, configures, and compiles
the necessary executables. Once it completes, use that environment, and install
rails.

$ rvm use 2.0.0
$ gem install rails --version 4.0.0 --no-ri --no-rdoc

With the exception of the rvm use statement, each of the previous instructions
needs to be done only once. The rvm use statement needs to be repeated each
time you open a shell window. The use keyword is optional, so you can
abbreviate this to rvm 2.0.0. You can also choose to make it the default Ruby
interpreter for new terminal sessions with the following command:

$ rvm --default 2.0.0
You can verify successful installation using the following command:
$ rails -v

If you have trouble, try the suggestions listed under the “Troubleshooting
Your Install” heading on the rvm site.’

OK, you OS X users are done. You can skip forward to join the Windows users
in Section 1.4, Choosing a Rails Version, on page 8. See you there.

Installing on Linux

Start with your platform’s native package management system, be it apt-get,
dpkg, portage, rpm, rug, synaptic, up2date, or yum.

The first step is to install the necessary dependencies. The following instruc-
tions are for Ubuntu 13.04 (Raring Ringtail); if you're on a different operating
system, you may need to adjust both the command and the package names.

$ sudo apt-get install apache2 curl git libmysqlclient-dev mysql-server nodejs

You'll be prompted for a root password for your mysql server. If you leave it blank,
you’ll be prompted multiple times. If you specify a password, you'll need to use
that password when you create a database in Iteration K1 on page 239.

5. https://rvm.io/rvim/install

https://rvm.io/rvm/install
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Installing on Linux * 7

While the Rails core team recommends Ruby 2.0 for use with Rails 4.0, if you
want to use a system-installed version of Ruby, you can use Ruby 1.9.3. This
will get you up and running quickly.

Starting with Ubuntu 12.04, you can install Ruby 1.9.3 and Rails 4.0 with

the following commands:

$ sudo apt-get install rubyl.9.3
$ sudo gem install rails --version 4.0.0 --no-ri --no-rdoc

If this works for you, you are done with the necessary installation steps and
can proceed to Section 1.4, Choosing a Rails Version, on page 8.

Many people prefer instead to have a separate installation of Ruby on their
machine dedicated to support their application, and therefore they choose to
download and build Ruby. The easiest way we’'ve found to do this is to use
RVM. Installing RVM is described on the RVM site.® An overview of the steps
is included here.

First, install RVM.

$ curl -L https://get.rvm.io | bash -s stable

Next, select the “Run command as login shell” checkbox in the Gnome Termi-
nal Profile Preference. Refer to the Integrating RVM with gnome-terminal page
for instructions.”

Exit your command window or Terminal application and open a new one.
This causes your .bash_login to be reloaded.

Execute the following command, which installs the necessary prerequisites
needed for your specific operating system:

$ rvm requirements --autolibs=enable
Once this is complete, you can proceed to install the Ruby interpreter.

$ rvm install 2.0.0

This step will take a while as it downloads, configures, and compiles the
necessary executables. Once it completes, use that environment, and install rails.

$ rvm use 2.0.0
$ gem install rails --version 4.0.0 --no-ri --no-rdoc

With the exception of the rvm use statement, each of the previous instructions
needs to be done only once. The rvm use statement needs to be repeated each

6. https://rvm.io/rvm/install
7. https://rvm.io/integration/gnome-terminal/

https://rvm.io/rvm/install
https://rvm.io/integration/gnome-terminal/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

1.4

Chapter 1. Installing Rails ¢ 8

time you open a shell window. The use keyword is optional, so you can
abbreviate this to rvm 2.0.0. You can also choose to make it the default Ruby
interpreter for new Terminal sessions with the following command:

$ rvm --default 2.0.0

You can verify successful installation using the following command:
$ rails -v

If you have trouble, try the suggestions listed under the “Troubleshooting
Your Install” heading on the RVM site.®

At this point, we've covered Windows, Mac OS X, and Linux. Instructions
after this point are common to all three operating systems.

Choosing a Rails Version

The previous instructions helped you install the version of Rails used in the
examples by this book. But occasionally you might not want to run that
version. For example, there may be a newer version with some fixes or new
features. Or perhaps you are developing on one machine but intending to
deploy on another machine that contains a version of Rails that you don’t
have any control over.

If either of these situations applies to you, you need to be aware of a few
things. For starters, you can find out all the versions of Rails you have
installed using the gem command.

$ gem list --local rails

You can also verify what version of Rails you are running as the default by
using the rails --version command. It should return 4.0.0.

If it does not, insert the version of Rails surrounded by underscores before
the first parameter of any rails command. Here’s an example:

$ rails _4.0.0_ --version

This is particularly handy when you create a new application, because once you
create an application with a specific version of Rails, it will continue to use that
version of Rails—even if newer versions are installed on the system—until you
decide it is time to upgrade. To upgrade, simply update the version number in
the Gemfile that is in the root directory of your application and run bundle install. We
will cover this command in greater depth in Section 24.3, Managing Dependencies
with Bundler, on page 397.

8. https://rvm.io/rvm/install

https://rvm.io/rvm/install
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

1.5

Setting Up Your Development Environment ¢ 9

Setting Up Your Development Environment

The day-to-day business of writing Rails programs is pretty straightforward.
Everyone works differently; here’s how we work.

The Command Line

We do a lot of work at the command line. Although there are an increasing
number of GUI tools that help generate and manage a Rails application, we
find the command line is still the most powerful place to be. It's worth
spending a little while getting familiar with the command line on your operat-
ing system. Find out how to use it to edit commands that you're typing, how
to search for and edit previous commands, and how to complete the names
of files and commands as you type.

So-called tab completion is standard on Unix shells such as Bash and zsh.
It allows you to type the first few characters of a filename, hit , and have
the shell look for and complete the name based on matching files.

Version Control

We keep all our work in a version control system (currently Git). We make a
point of checking a new Rails project into Git when we create it and committing
changes once we have passed the tests. We normally commit to the repository
many times an hour.

If you're working on a Rails project with other people, consider setting up a
continuous integration (CI) system. When anyone checks in changes, the CI
system will check out a fresh copy of the application and run all the tests.
It's a simple way to ensure that accidental breakages get immediate attention.
You can also set up your CI system so that your customers can use it to play
with the bleeding-edge version of your application. This kind of transparency
is a great way of ensuring that your project isn’t going off the tracks.

Editors

We write our Rails programs using a programmer’s editor. We've found over
the years that different editors work best with different languages and envi-
ronments. For example, Dave originally wrote this chapter using Emacs
because he thinks that its Filladapt mode is unsurpassed when it comes to
neatly formatting XML as he types. Sam updated the chapter using Vim. But
many think that neither Emacs nor Vim is ideal for Rails development.
Although the choice of editor is a personal one, here are some suggestions of
features to look for in a Rails editor:

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Chapter 1. Installing Rails * 10

e Support for syntax highlighting of Ruby and HTML. Ideally support for

.erb files (a Rails file format that embeds Ruby snippets within HTML).

e Support of automatic indentation and reindentation of Ruby source. This

is more than an aesthetic feature: having an editor indent your program
as you type is the best way of spotting bad nesting in your code. Being
able to reindent is important when you refactor your code and move stuff.
(TextMate’s ability to reindent when it pastes code from the clipboard is
very convenient.)

Support for insertion of common Ruby and Rails constructs. You'll be
writing lots of short methods, and if the IDE creates method skeletons
with a keystroke or two, you can concentrate on the interesting stuff
inside.

Good file navigation. As you’ll see, Rails applications are spread across
many files; for example, a newly created Rails application enters the world
containing forty-six files spread across thirty-four directories. That’s before
you've written a thing.

You need an environment that helps you navigate quickly between these.
You'll add a line to a controller to load a value, switch to the view to add
a line to display it, and then switch to the test to verify you did it all right.
Something like Notepad, where you traverse a File Open dialog box to
select each file to edit, just won't cut it. We prefer a combination of a tree
view of files in a sidebar, a small set of keystrokes that help us find a file
(or files) in a directory tree by name, and some built-in smarts that know
how to navigate (say) between a controller action and the corresponding
view.

Name completion. Names in Rails tend to be long. A nice editor will let
you type the first few characters and then suggest possible completions
to you at the touch of a key.

We hesitate to recommend specific editors because we've used only a few in
earnest and we’ll undoubtedly leave someone’s favorite editor off the list.
Nevertheless, to help you get started with something other than Notepad,
here are some suggestions:

9.

e TextMate was once the Mac OS X de facto standard text editor for Ruby

on Rails.’

http://macromates.com/

http://macromates.com/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Setting Up Your Development Environment ¢ 11

e Sublime Text'® is a cross-platform alternative that some see as the de
facto successor for TextMate.

 Aptana Studio 3'' is an integrated Rails development environment that
runs in Eclipse. It runs on Windows, Mac OS X, and Linux. Originally
known as RadRails, it won an award for being the best open source
developer tool based on Eclipse in 2006, and Aptana became the home
for the project in 2007.

e jEdit'? is a fully featured editor with support for Ruby. It has extensive
plugin support.

e Komodo'® is ActiveState’s IDE for dynamic languages, including Ruby.

e RubyMine'* is a commercial IDE for Ruby and is available for free to
qualified educational and open source projects. It runs on Windows, Mac
OS X, and Linux.

 NetBeans Ruby and Rails plugin'® is an open source plugin for the popular
NetBeans IDE.

Ask experienced developers who use your kind of operating system which
editor they use. Spend a week or so trying alternatives before settling in.

The Desktop

We're not going to tell you how to organize your desktop while working with
Rails, but we will describe what we do.

Most of the time, we're writing code, running tests, and poking at an applica-
tion in a browser. So, our main development desktop has an editor window
and a browser window permanently open. We also want to keep an eye on
the logging that’s generated by the application, so we keep a terminal window
open. In it, we use tail -f to scroll the contents of the log file as it’s updated.
We normally run this window with a very small font so it takes up less
space—if we see something interesting flash by, we zoom it up to investigate.

We also need access to the Rails API documentation, which we view in a
browser. In the introduction, we talked about using the gem server command
to run a local web server containing the Rails documentation. This is

10. http://www.sublimetext.com/

11. http://www.aptana.com/products/studio3

12. http://www.jedit.org/

13. http://www.activestate.com/komodo-ide

14. http://www.jetbrains.com/ruby/features/index.html
15. http://plugins.netbeans.org/plugin/38549

http://www.sublimetext.com/
http://www.aptana.com/products/studio3
http://www.jedit.org/
http://www.activestate.com/komodo-ide
http://www.jetbrains.com/ruby/features/index.html
http://plugins.netbeans.org/plugin/38549
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

1.6

Chapter 1. Installing Rails * 12

Where’s My IDE?

If you're coming to Ruby and Rails from languages such as C# and Java, you may
be wondering about IDEs. After all, we all know that it’s impossible to code modern
applications without at least 100MB of IDE supporting our every keystroke. For you
enlightened ones, here’s the point in the book where we recommend you sit
down—ideally propped up on each side by a pile of framework references and 1,000-
page Made Easy books.

It may surprise you to know that most Rails developers don’t use fully fledged IDEs
for Ruby or Rails (although some of the environments come close). Indeed, many Rails
developers use plain old editors. And it turns out that this isn’t as much of a problem
as you might think. With other, less expressive languages, programmers rely on IDEs
to do much of the grunt work for them, because IDEs do code generation, assist with
navigation, and compile incrementally to give early warning of errors.

With Ruby, however, much of this support just isn’t necessary. Editors such as
TextMate and BBEdit give you 90 percent of what you'd get from an IDE but are far
lighter weight. Just about the only useful IDE facility that’s missing is refactoring
support.

convenient, but it unfortunately splits the Rails documentation across a
number of separate documentation trees. If you're online, you can use
http://api.rubyonrails.org/ to see a consolidated view of all the Rails docu-
mentation in one place.

Rails and Databases

The examples in this book were written using SQLite 3 (version 3.7.4 or there-
abouts). If you want to follow along with our code, it's probably simplest if you
use SQLite 3 too. If you decide to use something else, it won’t be a major problem.
You may have to make minor adjustments to any explicit SQL in our code, but
Rails pretty much eliminates database-specific SQL from applications.

If you want to connect to a database other than SQLite 3, Rails also works
with DB2, MySQL, Oracle, Postgres, Firebird, and SQL Server. For all but
SQLite 3, you'll need to install a database driver, a library that Rails can use
to connect to and use your database engine. This section contains links to
instructions to get that done.

The database drivers are all written in C and are primarily distributed in
source form. If you don’t want to bother building a driver from source, take
a careful look at the driver’s website. Many times you’ll find that the author
also distributes binary versions.

http://api.rubyonrails.org/
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Rails and Databases ¢ 13

You can create your own local version of the consolidated Rails API documentation.
Just type the following commands at a command prompt:

rails_apps> rails new dummy_app
rails_apps> cd dummy_app
dummy_app> rake doc:rails

The last step takes a while. When it finishes, you'll have the Rails API documentation
in a directory tree starting at doc/api. We suggest moving this folder to your desktop
and then deleting the dummy_app tree.

To view the Rails API documentation, open the location doc/api/index.html with your
browser.

If you can’t find a binary version or if you'd rather build from source anyway,
you’ll need a development environment on your machine to build the library.
Under Windows, this means having a copy of Visual C++. Under Linux, you'll
need gecc and friends (but these will likely already be installed).

Under OS X, you'll need to install the developer tools (they come with the
operating system but aren’t installed by default). You'll also need to install
your database driver into the correct version of Ruby. If you installed your
own copy of Ruby, bypassing the built-in one, it is important to remember to
have this version of Ruby first in your path when building and installing the
database driver. You can use the command which ruby to make sure you're not
running Ruby from /usr/bin.

The following are the available database adapters and the links to their
respective home pages:

DB2 http://raa.ruby-lang.org/project/ruby-db2

or http://rubyforge.org/projects/rubyibm
Firebird http:/ /rubyforge.org/projects/fireruby/
MySQL http://www.tmtm.org/en/mysql/ruby/
Oracle http:/ /rubyforge.org/projects/ruby-oci8
Postgres https:/ /bitbucket.org/ged/ruby-pg/wiki/Home

SQL Server https://github.com/rails-sqlserver
SQLite https://github.com/luislavena/sqlite3-ruby

MySQL and SQLite adapters are also available for download as RubyGems
(mysql2 and sqlite3, respectively).

report erratum -« discuss

http://raa.ruby-lang.org/project/ruby-db2
http://rubyforge.org/projects/rubyibm
http://rubyforge.org/projects/fireruby/
http://www.tmtm.org/en/mysql/ruby/
http://rubyforge.org/projects/ruby-oci8
https://bitbucket.org/ged/ruby-pg/wiki/Home
https://github.com/rails-sqlserver
https://github.com/luislavena/sqlite3-ruby
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Chapter 1. Installing Rails * 14

What We Just Did

e We installed (or upgraded) the Ruby language.

e We installed (or upgraded) the Rails framework.

e We installed (or upgraded) the SQLite3 and MySQL databases.
e We selected an editor.

Now that we have Rails installed, let’s use it. It’s time to move on to the next
chapter where we create our first application.

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

2.1

In this chapter, we'll see
« creating a new application,
« starting the server,
- accessing the server from a browser,
» producing dynamic content,
» adding hypertext links, and
« passing data from the controller to the view.

CHAPTER 2

Instant Gratification

Let’s write a simple application to verify we have Rails snugly installed on our
machines. Along the way, we’ll get a peek at the way Rails applications work.

Creating a New Application

When you install the Rails framework, you also get a new command-line tool,
rails, that is used to construct each new Rails application you write.

Why do we need a tool to do this? Why can’t we just hack away in our favorite
editor and create the source for our application from scratch? Well, we could
just hack. After all, a Rails application is just Ruby source code. But Rails
also does a lot of magic behind the curtain to get our applications to work
with a minimum of explicit configuration. To get this magic to work, Rails
needs to find all the various components of your application. As we’ll see later
(in Section 18.1, Where Things Go, on page 261), this means we need to create
a specific directory structure, slotting the code we write into the appropriate
places. The rails command simply creates this directory structure for us and
populates it with some standard Rails code.

To create your first Rails application, pop open a shell window, and navigate
to a place in your filesystem where you want to create your application’s
directory structure. In our example, we’ll be creating our projects in a direc-
tory called work. In that directory, use the rails command to create an application
called demo. Be slightly careful here—if you have an existing directory called
demo, you will be asked whether you want to overwrite any existing files. (Note:
if you want to specify which Rails version to use, as described in Section 1.4,
Choosing a Rails Version, on page 8, now would be the time to do so.)

rubys> cd work

work> rails new demo
create

create README.rdoc

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Chapter 2. Instant Gratification ¢ 16

create Rakefile
create config.ru

create vendor/assets/stylesheets
create vendor/assets/stylesheets/.keep
run bundle install
Fetching gem metadata from https://rubygems.org/...........

Your bundle is complete!
Use “bundle show [gemname] ™ to see where a bundled gem is installed.
work>

The command has created a directory named demo. Pop down into that
directory, and list its contents (using Is on a Unix box or using dir under
Windows). You should see a bunch of files and subdirectories.

work> cd demo

demo> 1s -p

app/ config/ db/ Gemfile.lock 1log/ Rakefile test/ vendor/
bin/ config.ru Gemfile 1lib/ public/ README.rdoc tmp/

All these directories (and the files they contain) can be intimidating to start
with, but we can ignore most of them for now. In this chapter, we’ll use only
one of them directly: the app directory, where we’ll write our application.

Examine your installation using the following command:
demo> rake about

If you get a Rails version other than 4.0.0, please reread Section 1.4, Choosing
a Rails Version, on page 8.

This command will also detect common installation errors. For example, if it
can't find a JavaScript runtime, it will provide you with a link to available
runtimes.

If you see a bunch of messages concerning already initialized constants or a
possible conflict with an extension, consider deleting the demo directory, cre-
ating a separate RVM gemset,' and starting over. If that doesn’t work, use
bundle exec” to run rake commands.

Once you get rake about working, you have everything you need to start a stand-
alone web server that can run our newly created Rails application. So, without
further ado, let’s start our demo application.

1. https://rvm.io/gemsets/basics/
2. http://gembundler.com/v1.3/bundle_exec.html

https://rvm.io/gemsets/basics/
http://gembundler.com/v1.3/bundle_exec.html
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

2.2

Hello, Rails! * 17

demo> rails server

=> Booting WEBrick

=> Rails 4.0.0 application starting in development on http://0.0.0.0:3000
=> Run “rails server -h" for more startup options

=> Ctrl-C to shutdown server

[2013-04-18 20:22:16] INFO WEBrick 1.3.1

[2013-04-18 20:22:16] INFO ruby 2.0.0 (2013-02-24) [x86 64-linux]
[2013-04-18 20:22:16] INFO WEBrick::HTTPServer#start: pid=25170 port=3000

Which web server is run depends on what servers you have installed. WEBrick
is a pure-Ruby web server that is distributed with Ruby itself and therefore
is guaranteed to be available. However, if another web server is installed on
your system (and Rails can find it), the rails server command may use it in
preference to WEBrick. You can force Rails to use WEBrick by providing an
option to the rails command.

demo> rails server webrick

As the last line of the startup tracing indicates, we just started a web server
on port 3000. The 0.0.0.0 part of the address means that WEBrick will accept
connections on all interfaces. On Dave’s OS X system, that means both local
interfaces (127.0.0.1 and ::1) and his LAN connection. We can access the
application by pointing a browser at the URL http://localhost:3000. The
result is shown in Figure 1, Newly created Rails application, on page 18.

If you look at the window where you started the server, you'll see tracing
showing you started the application. We're going to leave the server running
in this console window. Later, as we write application code and run it via our
browser, we’ll be able to use this console window to trace the incoming
requests. When the time comes to shut down your application, you can press
Ctrl-C in this window to stop WEBrick. (Don’t do that yet—we’ll be using this
particular application in a minute.)

At this point, we have a new application running, but it has none of our code
in it. Let’s rectify this situation.

Hello, Rails!

We can’t help it—we just have to write a “Hello, World!” program to try a new
system. Let’'s start by creating a simple application that sends our cheery
greeting to a browser. After we get that working, we will embellish it with the
current time and links.

As we’ll explore further in Chapter 3, The Architecture of Rails Applications,
on page 29, Rails is a Model-View-Controller framework. Rails accepts
incoming requests from a browser, decodes the request to find a controller,

http://localhost:3000
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Chapter 2. Instant Gratification ¢ 18

| Ruby on Rails: Welcome = x|

e € | [localhost o7

Browse the
WIEICOIT]‘E. abqard S documentation
You're riding Ruby on Rails!
About your application’s environment Rails Guides

Rails API

Ruby core
GEttiﬂg started Ruby standard library

Here's how to get rolling:

1. Use rails generate to create your models and
controllers

To see all available options, run it without parameters.

2. Set up a root route to replace this page

You're seeing this page because you're running in development mode
and you haven't set a root route yet.

Routes are set up in config/routes.rb.

3. Create your database

Run rake db:create to create your database. If you're not using
sQLite (the default), edit config/database.yml with your username and
password.

Figure 1—Newly created Rails application

and calls an action method in that controller. The controller then invokes a
particular view to display the results to the user. The good news is that Rails
takes care of most of the internal plumbing that links all these actions. To
write our simple “Hello, World!” application, we need code for a controller and
a view, and we need a route to connect the two. We don’t need code for a
model, because we're not dealing with any data. Let’s start with the controller.

In the same way that we used the rails command to create a new Rails appli-
cation, we can also use a generator script to create a new controller for our
project. This command is called rails generate. So, to create a controller called
say, we make sure we're in the demo directory and run the command, passing
in the name of the controller we want to create and the names of the actions
we intend for this controller to support.

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Hello, Rails! * 19

demo> rails generate controller Say hello goodbye
create app/controllers/say controller.rb
route get "say/goodbye"
route get "say/hello"
invoke erb
create app/views/say
create app/views/say/hello.html.erb
create app/views/say/goodbye.html.erb
invoke test unit
create test/controllers/say controller test.rb
invoke helper
create app/helpers/say helper.rb

invoke test _unit

create test/helpers/say helper test.rb
invoke assets

invoke coffee

create app/assets/javascripts/say.js.coffee
invoke SCSS

create app/assets/stylesheets/say.css.scss

The rails generate command logs the files and directories it examines, noting
when it adds new Ruby scripts or directories to your application. For now,
we're interested in one of these scripts and (in a minute) the .html.erb files.

The first source file we’ll be looking at is the controller. You'll find it in the
file app/controllers/say_controller.rb. Let’s take a look at it:

Download rails40/demo1/app/controllers/say_controller.rb
class SayController < ApplicationController
def hello
end

def goodbye
end
end

Pretty minimal, eh? SayController is a class that inherits from ApplicationController,
so it automatically gets all the default controller behavior. What does this
code have to do? For now, it does nothing—we simply have empty action
methods named hello() and goodbye(). To understand why these methods are
named this way, we need to look at the way Rails handles requests.

Rails and Request URLs

Like any other web application, a Rails application appears to its users to be
associated with a URL. When you point your browser at that URL, you are
talking to the application code, which generates a response to you.

defining classes
<> on page 45

http://media.pragprog.com/titles/rails4/code/rails40/demo1/app/controllers/say_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Chapter 2. Instant Gratification ¢ 20

Let’s try it now. Navigate to the URL http://localhost:3000/say/hello in a
browser. You'll see something that looks like this:

|| Demo1 x

&= & | [localhost Pty

Say#hello

Find me in app/views/say/hello.html.erb

Our First Action

At this point, we can see not only that we have connected the URL to our
controller but also that Rails is pointing the way to our next step, namely, to
tell Rails what to display. That’s where views come in. Remember when we
ran the script to create the new controller? That command added several files
and a new directory to our application. That directory contains the template
files for the controller’s views. In our case, we created a controller named say,
so the views will be in the directory app/views/say.

By default, Rails looks for templates in a file with the same name as the action
it's handling. In our case, that means we need to replace a file called
hello.html.erb in the directory app/views/say. (Why .html.erb? We’ll explain in a
minute.) For now, let’s just put some basic HTML in there.

Download rails40/demo1/app/views/say/hello.html.erb
<hl>Hello from Rails!</hl>

Save the file hello.html.erb, and refresh your browser window. You should see
it display our friendly greeting.

|| Demo1 x

- @ | [localhost iy

Hello from Rails!

In total, we've looked at two files in our Rails application tree. We looked at
the controller, and we modified a template to display a page in the browser.

http://localhost:3000/say/hello
http://media.pragprog.com/titles/rails4/code/rails40/demo1/app/views/say/hello.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Hello, Rails! * 21
These files live in standard locations in the Rails hierarchy: controllers go
into app/controllers, and views go into subdirectories of app/views. See the following

figure:

class SayController < ApplicationController

demo/ def hello
|_app/ e::d

— controllers/
(I say_controller.rb

<html>
—models/ <head>
<title>Hello, Rails!</title>
|__views/ </head>

L_ say/ <body>
<h1>Hello from Rails!</h1>

L_hello.html.erb </body>

</html>

Figure 2—Standard locations for controllers and views

Making It Dynamic

So far, our Rails application is pretty boring—it just displays a static page.
To make it more dynamic, let's have it show the current time each time it
displays the page.

To do this, we need to change the template file in the view—it now needs to
include the time as a string. That raises two questions. First, how do we add
dynamic content to a template? Second, where do we get the time from?

Dynamic Content

There are many ways of creating dynamic templates in Rails. The most com-
mon way, which we’ll use here, is to embed Ruby code in the template. That’s
why we named our template file hello.html.erb; the .html.erb suffix tells Rails to
expand the content in the file using a system called ERB.

ERB is a filter that is installed as part of the Rails installation that takes an
.erb file and outputs a transformed version. The output file is often HTML in
Rails, but it can be anything. Normal content is passed through without being
changed. However, content between <%= and %> is interpreted as Ruby code
and executed. The result of that execution is converted into a string, and that

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

instance variable
<> on page 46

Chapter 2. Instant Gratification ¢ 22

value is substituted in the file in place of the <%=...%> sequence. For example,
change hello.html.erb to display the current time.

Download rails40/demo2/app/views/say/hello.html.erb
<hl>Hello from Rails!</hl>
<p>
It is now <%= Time.now %>
</p>

When we refresh our browser window, we see the time displayed using Ruby’s
standard format.

|| Demo1 %

- & | [localhost 7

Hello from Rails!

It is now 2013-01-29 11:05:58 -0500

Notice that if you hit Refresh in your browser, the time updates each time
the page is displayed. It looks as if we're really generating dynamic content.

Adding the Time

Our original problem was to display the time to users of our application. We
now know how to make our application display dynamic data. The second
issue we have to address is working out where to get the time from.

We've shown that the approach of embedding a call to Ruby’s Time.now() method
in our hello.html.erb template works. Each time we access this page, the user
will see the current time substituted into the body of the response. And for
our trivial application, that might be good enough. In general, though, we
probably want to do something slightly different. We’ll move the determination
of the time to be displayed into the controller and leave the view with the
simple job of displaying it. We’ll change our action method in the controller
to set the time value into an instance variable called @time.

Download rails40/demo3/app/controllers/say_controller.rb
class SayController < ApplicationController
def hello
> @time = Time.now
end

def goodbye
end
end

http://media.pragprog.com/titles/rails4/code/rails40/demo2/app/views/say/hello.html.erb
http://media.pragprog.com/titles/rails4/code/rails40/demo3/app/controllers/say_controller.rb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Hello, Rails! * 23

Making Development Easier

You might have noticed something about the development we've been doing so far.
As we've been adding code to our application, we haven’t had to restart the running
application. It has been happily chugging away in the background. And yet each
change we make is available whenever we access the application through a browser.
What gives?

It turns out that the Rails dispatcher is pretty clever. In development mode (as opposed
to testing or production), it automatically reloads application source files when a new
request comes along. That way, when we edit our application, the dispatcher makes
sure it’s running the most recent changes. This is great for development.

However, this flexibility comes at a cost—it causes a short pause after you enter a
URL before the application responds. That’s caused by the dispatcher reloading stuff.
For development it’s a price worth paying, but in production it would be unacceptable.
Because of this, this feature is disabled for production deployment (see Chapter 16,
Task K: Deployment and Production, on page 233).

In the .html.erb template, we’ll use this instance variable to substitute the time
into the output.

Download rails40/demo3/app/views/say/hello.html.erb
<hl>Hello from Rails!</hl>
<p>
It is now <%= @time %>
</p>

When we refresh our browser window, we will again see the current time,
showing that the communication between the controller and the view was
successful.

Why did we go to the extra trouble of setting the time to be displayed in the
controller and then using it in the view? Good question. In this application,
it doesn’t make much difference, but by putting the logic in the controller
instead, we buy ourselves some benefits. For example, we may want to extend
our application in the future to support users in many countries. In that case,
we’'d want to localize the display of the time, choosing a time appropriate to
their time zone. That would be a fair amount of application-level code, and it
would probably not be appropriate to embed it at the view level. By setting
the time to display in the controller, we make our application more flexible—we
can change the time zone in the controller without having to update any view
that uses that time object. The time is data, and it should be supplied to the
view by the controller. We’ll see a lot more of this when we introduce models
into the equation.

http://media.pragprog.com/titles/rails4/code/rails40/demo3/app/views/say/hello.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

2.3

Chapter 2. Instant Gratification ¢ 24

The Story So Far

Let’s briefly review how our current application works.

1. The user navigates to our application. In our case, we do that using a
local URL such as http://localhost:3000/say/hello.

2. Rails then matches the route pattern, which it previously split into two
parts and analyzed.

The say part is taken to be the name of a controller, so Rails creates a new
instance of the Ruby class SayController (which it finds in app/controllers/
say_controller.rb).

3. The next part of the pattern, hello, identifies an action. Rails invokes a
method of that name in the controller. This action method creates a new
Time object holding the current time and tucks it away in the @time instance
variable.

4. Rails looks for a template to display the result. It searches the directory
app/views for a subdirectory with the same name as the controller (say) and
in that subdirectory for a file named after the action (hello.html.erb).

5. Rails processes this file through the ERB templating system, executing
any embedded Ruby and substituting in values set up by the controller.

6. The result is returned to the browser, and Rails finishes processing this
request.

This isn’'t the whole story—Rails gives you lots of opportunities to override
this basic workflow (and we’ll be taking advantage of them shortly). As it
stands, our story illustrates convention over configuration, one of the funda-
mental parts of the philosophy of Rails. By providing convenient defaults and
by applying certain conventions on how a URL is constructed or in what file
a controller definition is placed and what class name and method names are
used, Rails applications are typically written using little or no external config-
uration—things just knit themselves together in a natural way.

Linking Pages Together

It's a rare web application that has just one page. Let’'s see how we can add
another stunning example of web design to our “Hello, World!” application.

Normally, each page in your application will correspond to a separate view.
In our case, we’ll also use a new action method to handle the page (although
that isn’t always the case, as we'll see later in the book). We’'ll use the same

http://localhost:3000/say/hello
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Linking Pages Together ¢ 25

controller for both actions. Again, this needn’t be the case, but we have no
compelling reason to use a new controller right now.

We already defined a goodbye action for this controller, so all that remains
is to create a new template in the directory app/views/say. This time it’s called
goodbye.html.erb because by default templates are named after their associated
actions.

Download rails40/demo4/app/views/say/goodbye.html.erb
<h1>Goodbye!</h1>
<p>
It was nice having you here.
</p>

Fire up our trusty browser again, but this time point to our new view using
the URL http://localhost:3000/say/goodbye. You should see something like
this:

|| Demo1 x

L o @ | [localhost k¢

Goodbye!

It was nice having you here.

Figure 3—Our second action

Now we need to link the two screens. We'll put a link on the hello screen that
takes us to the goodbye screen, and vice versa. In a real application, we might
want to make these proper buttons, but for now we’ll just use hyperlinks.

We already know that Rails uses a convention to parse the URL into a target
controller and an action within that controller. So, a simple approach would
be to adopt this URL convention for our links.

The file hello.html.erb would contain the following:

<p>
Say Goodbye!
</p>

And the file goodbye.html.erb would point the other way.

http://media.pragprog.com/titles/rails4/code/rails40/demo4/app/views/say/goodbye.html.erb
http://localhost:3000/say/goodbye
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

YYVYYy

Chapter 2. Instant Gratification ¢ 26

<p>
Say Hello!
</p>

This approach would certainly work, but it’s a bit fragile. If we were to move
our application to a different place on the web server, the URLs would no
longer be valid. It also encodes assumptions about the Rails URL format into
our code; it’s possible a future version of Rails might change this.

Fortunately, these aren’t risks we have to take. Rails comes with a bunch of
helper methods that can be used in view templates. Here, we’ll use the helper
method link_to(), which creates a hyperlink to an action. (The link_to() method
can do a lot more than this, but let’s take it gently for now.) Using link_to(),
hello.html.erb becomes the following:

Download rails40/demo5/app/views/say/hello.html.erb
<hl>Hello from Rails!</hl>
<p>

It is now <%= @time %>
</p>
<p>

Time to say

<%= link to "Goodbye", say goodbye path %>!
</p>

There’s a link_to() call within an ERB <%=...%> sequence. This creates a link to
a URL that will invoke the goodbye() action. The first parameter in the call to
link_to() is the text to be displayed in the hyperlink, and the next parameter
tells Rails to generate the link to the goodbye() action.

Let’s stop for a minute to consider how we generated the link. We wrote this:

link to "Goodbye", say goodbye path

First, link_to() is a method call. (In Rails, we call methods that make it easier
to write templates helpers.) If you come from a language such as Java, you
might be surprised that Ruby doesn’t insist on parentheses around method
parameters. You can always add them if you like.

say _goodbye path is a precomputed value that Rails makes available to application
views. It evaluates to the /say/goodbye path. Over time you will see that Rails
provides the ability to name all the routes that you will be using in your
application.

http://media.pragprog.com/titles/rails4/code/rails40/demo5/app/views/say/hello.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Linking Pages Together ¢ 27

OK, let’s get back to the application. If we point our browser at our hello page,
it will now contain the link to the goodbye page, as shown in the following
figure:

|| Demo1 ®

L o & | [localhost e

Hello from Rails!

It is now 2013-01-29 11:10:19 -0500

Time to say Goodbye!

N

Figure 4—The Hello page with a link to the goodbye page

We can make the corresponding change in goodbye.html.erb, linking it back to
the initial hello page.

Download rails40/demo5/app/views/say/goodbye.html.erb

<h1>Goodbye!</hl>

<p>

It was nice having you here.

</p>
> <p>
» Say <%= link to "Hello", say hello path %> again.
> </p>

At this point, we've completed our toy application and in the process verified
that our installation of Rails is functioning properly. After a brief recap, it is
now time to move on to building a real application.

What We Just Did

We constructed a toy application that showed us the following:

e How to create a new Rails application and how to create a new controller
in that application

e How to create dynamic content in the controller and display it via the
view template

¢ How to link pages together

http://media.pragprog.com/titles/rails4/code/rails40/demo5/app/views/say/goodbye.html.erb
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Chapter 2. Instant Gratification ¢ 28

This is a great foundation, and it didn’t really take much time or effort. This
experience will continue as we move on to the next chapter and build a much
bigger application.

Playtime
Here’s some stuff to try on your own:

e Experiment with the following expressions:
e Addition: <%= 1+2 %>
¢ Concatenation: <%= "cow" + "boy" %>
¢ Time in one hour: <%= 1.hour.from_now.localtime %>

e A call to the following Ruby method returns a list of all the files in the
current directory:

@files = Dir.glob('*")

Use it to set an instance variable in a controller action, and then write
the corresponding template that displays the filenames in a list on the
browser.

Hint: you can iterate over a collection using something like this:
<% for file in @files %>

file name is: <%= file %>
<% end %>

You might want to use a for the list.

(You'll find hints at http://www.pragprog.com/wikis/wiki/RailsPlayTime.)

Cleaning Up

Maybe you've been following along and writing the code in this chapter. If so,
chances are that the application is still running on your computer. When we
start coding our next application in Chapter 6, Task A: Creating the Application,
on page 61, we'll get a conflict the first time we run it because it will also try
to use the computer’s port 3000 to talk with the browser. Now would be a
good time to stop the current application by pressing Ctrl-C in the window
you used to start it. Microsoft Windows users may need to press Ctrl-Pause/
Break instead.

Now let’s move on to an overview of Rails.

http://www.pragprog.com/wikis/wiki/RailsPlayTime
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

3.1

In this chapter, we'll see
« models,
. views, and
. controllers.

CHAPTER 3

The Architecture of Rails Applications

One of the interesting features of Rails is that it imposes some fairly serious
constraints on how you structure your web applications. Surprisingly, these
constraints make it easier to create applications—a lot easier. Let’s see why.

Models, Views, and Controllers

Back in 1979, Trygve Reenskaug came up with a new architecture for devel-
oping interactive applications. In his design, applications were broken into
three types of components: models, views, and controllers.

The model is responsible for maintaining the state of the application. Some-
times this state is transient, lasting for just a couple of interactions with the
user. Sometimes the state is permanent and will be stored outside the appli-
cation, often in a database.

A model is more than just data; it enforces all the business rules that apply
to that data. For example, if a discount shouldn’t be applied to orders of less
than $20, the model will enforce the constraint. This makes sense; by putting
the implementation of these business rules in the model, we make sure that
nothing else in the application can make our data invalid. The model acts as
both a gatekeeper and a data store.

The view is responsible for generating a user interface, normally based on
data in the model. For example, an online store will have a list of products
to be displayed on a catalog screen. This list will be accessible via the model,
but it will be a view that formats the list for the end user. Although the view
may present the user with various ways of inputting data, the view itself
never handles incoming data. The view’s work is done once the data is dis-
played. There may well be many views that access the same model data, often
for different purposes. In the online store, there’ll be a view that displays

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Chapter 3. The Architecture of Rails Applications ¢ 30

product information on a catalog page and another set of views used by
administrators to add and edit products.

Controllers orchestrate the application. Controllers receive events from the
outside world (normally user input), interact with the model, and display an
appropriate view to the user.

This triumvirate—the model, view, and controller—together form an architec-
ture known as MVC. To learn how the three concepts fit together, see the
following figure:

@ Browser sends request

@ Controller interacts with model

® Controller invokes view
Controller @ View renders next browser screen

\\

—_
VieW 4‘ ------- MOdEI <_

Figure 5—The Model-View-Controller architecture

The MVC architecture was originally intended for conventional GUI applica-
tions, where developers found the separation of concerns led to far less
coupling, which in turn made the code easier to write and maintain. Each
concept or action was expressed in just one well-known place. Using MVC
was like constructing a skyscraper with the girders already in place—it was
a lot easier to hang the rest of the pieces with a structure already there.
During the development of our application, we will be making heavy use of
Rails’ ability to generate scaffolding for our application.

Ruby on Rails is an MVC framework, too. Rails enforces a structure for your
application—you develop models, views, and controllers as separate chunks
of functionality, and it knits them together as your program executes. One
of the joys of Rails is that this knitting process is based on the use of intelligent
defaults so that you typically don’t need to write any external configuration
metadata to make it all work. This is an example of the Rails philosophy of
favoring convention over configuration.

In a Rails application, an incoming request is first sent to a router, which
works out where in the application the request should be sent and how the
request itself should be parsed. Ultimately, this phase identifies a particular

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Models, Views, and Controllers * 31

method (called an action in Rails parlance) somewhere in the controller code.
The action might look at data in the request, it might interact with the model,
and it might cause other actions to be invoked. Eventually the action prepares
information for the view, which renders something to the user.

Rails handles an incoming request as shown in the following figure. In this
example, the application has previously displayed a product catalog page,
and the user has just clicked the button next to one of the products.
This button posts to http://localhost:3000/line_items?product_id=2, where
line_items is a resource in our application and 2 is our internal ID for the
selected product.

m @ http://my.url/line_items?product_id=2
/ @ Routing finds Lineltems controller
® Controller interacts with model
@ Controller invokes view
® View renders next browser screen

S"Eis PRAGMATIC BOOKSHELF

Line Items
Controller

i
Line | Active —>
A2 LS e e <— | Database
View
Model

Figure 6—Rails and MVC

The routing component receives the incoming request and immediately picks
it apart. The request contains a path (/line_items?product_id=2) and a method (this
button does a POST operation; other common methods are GET, PUT, PATCH,
and DELETE). In this simple case, Rails takes the first part of the path,
line_items, as the name of the controller and the product_id as the ID of a product.
By convention, POST methods are associated with create() actions. As a result
of all this analysis, the router knows it has to invoke the create() method in
the controller class LineltemsController (we’ll talk about naming conventions in
Section 18.2, Naming Conventions, on page 270).

The create() method handles user requests. In this case, it finds the current
user’s shopping cart (which is an object managed by the model). It also asks
the model to find the information for product 2. It then tells the shopping
cart to add that product to itself. (See how the model is being used to keep
track of all the business data? The controller tells it what to do, and the
model knows how to do it.)

http://localhost:3000/line_items?product_id=2
http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

3.2

Chapter 3. The Architecture of Rails Applications ¢ 32

Now that the cart includes the new product, we can show it to the user. The
controller invokes the view code, but before it does, it arranges things so that
the view has access to the cart object from the model. In Rails, this invocation
is often implicit; again, conventions help link a particular view with a given
action.

That's all there is to an MVC web application. By following a set of conventions
and partitioning your functionality appropriately, you’ll discover that your
code becomes easier to work with and your application becomes easier to
extend and maintain. That seems like a good trade.

If MVC is simply a question of partitioning your code a particular way, you
might be wondering why you need a framework such as Ruby on Rails. The
answer is straightforward: Rails handles all of the low-level housekeeping for
you—all those messy details that take so long to handle by yourself—and lets
you concentrate on your application’s core functionality. Let’s see how.

Rails Model Support

In general, we’ll want our web applications to keep their information in a
relational database. Order-entry systems will store orders, line items, and
customer details in database tables. Even applications that normally use
unstructured text, such as weblogs and news sites, often use databases as
their back-end data store.

Although it might not be immediately apparent from the SQL' you use to
access them, relational databases are actually designed around mathematical
set theory. Although this is good from a conceptual point of view, it makes it
difficult to combine relational databases with object-oriented (OO) program-
ming languages. Objects are all about data and operations, and databases
are all about sets of values. Operations that are easy to express in relational
terms are sometimes difficult to code in an OO system. The reverse is also
true.

Over time, folks have worked out ways of reconciling the relational and OO
views of their corporate data. Let’s look at the way that Rails chooses to map
relational data onto objects.

Object-Relational Mapping

ORM libraries map database tables to classes. If a database has a table called
orders, our program will have a class named Order. Rows in this table correspond

1. SQL, referred to by some as Structured Query Language, is the language used to query
and update relational databases.

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Rails Model Support ¢ 33

to objects of the class—a particular order is represented as an object of class Order
. Within that object, attributes are used to get and set the individual columns.
Our Order object has methods to get and set the amount, the sales tax, and so on.

In addition, the Rails classes that wrap our database tables provide a set of
class-level methods that perform table-level operations. For example, we might
need to find the order with a particular ID. This is implemented as a class
method that returns the corresponding Order object. In Ruby code, this might
look like this:

order = Order.find(1)
puts "Customer #{order.customer id}, amount=$#{order.amount}"

Sometimes these class-level methods return collections of objects.

Order.where(name: 'dave').each do |order|
puts order.amount
end

Finally, the objects corresponding to individual rows in a table have methods
that operate on that row. Probably the most widely used is save(), the operation
that saves the row to the database.

Order.where(name: 'dave').each do |order|
order.pay type = "Purchase order"
order.save

end

So, an ORM layer maps tables to classes, rows to objects, and columns to
attributes of those objects. Class methods are used to perform table-level
operations, and instance methods perform operations on the individual rows.

In a typical ORM library, you supply configuration data to specify the
mappings between entities in the database and entities in the program.
Programmers using these ORM tools often find themselves creating and
maintaining a boatload of XML configuration files.

Active Record

Active Record is the ORM layer supplied with Rails. It closely follows the
standard ORM model: tables map to classes, rows to objects, and columns
to object attributes. It differs from most other ORM libraries in the way it is
configured. By relying on convention and starting with sensible defaults,
Active Record minimizes the amount of configuration that developers perform.

To illustrate this, here’s a program that uses Active Record to wrap our orders
table:

class method
<> on page 45
puts

<> on page 39

iterating
<> on page 44

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

33

Chapter 3. The Architecture of Rails Applications ¢ 34

require ‘'active record'

class Order < ActiveRecord: :Base
end

order = Order.find(1)
order.pay type = "Purchase order"
order.save

This code uses the new Order class to fetch the order with an id of 1 and mod-
ify the pay type. (We've omitted the code that creates a database connection
for now.) Active Record relieves us of the hassles of dealing with the underlying
database, leaving us free to work on business logic.

But Active Record does more than that. As you'll see when we develop our
shopping cart application, starting in Chapter 5, The Depot Application, on
page 55, Active Record integrates seamlessly with the rest of the Rails
framework. If a web form sends the application data related to a business
object, Active Record can extract it into our model. Active Record supports
sophisticated validation of model data, and if the form data fails validations,
the Rails views can extract and format errors.

Active Record is the solid model foundation of the Rails MVC architecture.

Action Pack: The View and Controller

When you think about it, the view and controller parts of MVC are pretty
intimate. The controller supplies data to the view, and the controller receives
events from the pages generated by the views. Because of these interactions,
support for views and controllers in Rails is bundled into a single component,
Action Pack.

Don’t be fooled into thinking that your application’s view code and controller
code will be jumbled up just because Action Pack is a single component. Quite
the contrary; Rails gives you the separation you need to write web applications
with clearly demarcated code for control and presentation logic.

View Support

In Rails, the view is responsible for creating all or part of a response to be
displayed in a browser, to be processed by an application, or to be sent as an
email. At its simplest, a view is a chunk of HTML code that displays some
fixed text. More typically you’ll want to include dynamic content created by
the action method in the controller.

In Rails, dynamic content is generated by templates, which come in three
flavors. The most common templating scheme, called Embedded Ruby (ERB),

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Action Pack: The View and Controller ¢ 35

embeds snippets of Ruby code within a view document, in many ways similar
to the way it is done in other web frameworks, such as PHP or JSP. Although
this approach is very flexible, some are concerned that it violates the spirit
of MVC. By embedding code in the view, we risk adding logic that should be
in the model or the controller. As with everything, while judicious use in
moderation is healthy, overuse can become a problem. Maintaining a clean
separation of concerns is part of the job of the developer. (We look at HTML
templates in Section 24.2, Generating HTML with ERB, on page 395.)

You can also use ERB to construct JavaScript fragments on the server that
are then executed on the browser. This is great for creating dynamic Ajax
interfaces. We talk about these starting in Section 11.2, Iteration F2: Creating
an Ajax-Based Cart, on page 142.

Rails also provides XML Builder to construct XML documents using Ruby
code—the structure of the generated XML will automatically follow the
structure of the code. We discuss xml.builder templates starting in Section 24.1,
Generating XML with Builder, on page 393.

And the Controller!

The Rails controller is the logical center of your application. It coordinates
the interaction between the user, the views, and the model. However, Rails
handles most of this interaction behind the scenes; the code you write con-
centrates on application-level functionality. This makes Rails controller code
remarkably easy to develop and maintain.

The controller is also home to a number of important ancillary services.

e It is responsible for routing external requests to internal actions. It handles
people-friendly URLs extremely well.

e It manages caching, which can give applications orders-of-magnitude
performance boosts.

e It manages helper modules, which extend the capabilities of the view
templates without bulking up their code.

e It manages sessions, giving users the impression of ongoing interaction
with our applications.

We've already seen and modified a controller in Section 2.2, Hello, Rails!, on
page 17 and will be seeing and modifying a number of controllers in the
development of a sample application, starting with the products controller in
Section 8.1, Iteration C1: Creating the Catalog Listing, on page 91.

There’s a lot to Rails. But before going any further, let’s have a brief refresher
—and for some of you, a brief introduction—to the Ruby language.

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

4.1

In this chapter, we'll see
« objects: names and methods;
« data: strings, arrays, hashes, and regular expressions;
- control: if, while, blocks, iterators, and exceptions;
» building blocks: classes and modules;
+ YAML and marshaling; and
« common idioms that you will see used in this book.

CHAPTER 4

Introduction to Ruby

Many people who are new to Rails are also new to Ruby. If you are familiar
with a language such as Java, JavaScript, PHP, Perl, or Python, you will find
Ruby pretty easy to pick up.

This chapter is not a complete introduction to Ruby. It will not cover topics
such as precedence rules (like most other programming languages, 1+2*3==7
in Ruby). It is only meant to explain enough Ruby that the examples in the
book make sense.

This chapter draws heavily from material in Programming Ruby [TFH13]. If
you think you need more background on the Ruby language (and at the risk
of being grossly self-serving), we’'d like to suggest that the best way to learn
Ruby and the best reference for Ruby’s classes, modules, and libraries is
Programming Ruby [TFH13] (also known as the PickAxe book). Welcome to
the Ruby community!

Ruby Is an Object-Oriented Language

Everything you manipulate in Ruby is an object, and the results of those
manipulations are themselves objects.

When you write object-oriented code, you're normally looking to model con-
cepts from the real world. Typically during this modeling process you'll discover
categories of things that need to be represented. In an online store, the concept
of a line item could be such a category. In Ruby, you'd define a class to rep-
resent each of these categories. You then use this class as a kind of factory
that generates objects—instances of that class. An object is a combination of
state (for example, the quantity and the product ID) and methods that use
that state (perhaps a method to calculate the line item’s total cost). We'll show
how to create classes in Classes, on page 45.

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

@name
<> on page 46

Chapter 4. Introduction to Ruby ¢ 38

Objects are created by calling a constructor, a special method associated with
a class. The standard constructor is called new(). Given a class called Lineltem,
you could create line item objects as follows:

line item one = LineItem.new
line_item one.quantity =1
line item one.sku = "AUTO B 00"

Methods are invoked by sending a message to an object. The message contains
the method’s name, along with any parameters the method may need. When
an object receives a message, it looks into its own class for a corresponding
method. Let’s look at some method calls:

"dave".length

line _item one.quantity()
cart.add line item(next purchase)
submit tag "Add to Cart"

Parentheses are generally optional in method calls. In Rails applications,
you’ll find that most method calls involved in larger expressions will have
parentheses, while those that look more like commands or declarations tend
not to have them.

Methods have names, as do many other constructs in Ruby. Names in Ruby
have special rules, rules that you may not have seen if you come to Ruby
from another language.

Ruby Names

Local variables, method parameters, and method names should all start with
a lowercase letter or with an underscore: order, line_item, and xr2000 are all valid.
Instance variables begin with an “at” (@) sign, such as @quantity and @product_id.
The Ruby convention is to use underscores to separate words in a multiword
method or variable name (so line_item is preferable to lineltem).

Class names, module names, and constants must start with an uppercase
letter. By convention they use capitalization, rather than underscores, to
distinguish the start of words within the name. Class names look like Object,
PurchaseOrder, and Lineltem.

Rails uses symbols to identify things. In particular, it uses them as keys when
naming method parameters and looking things up in hashes. Here’s an example:

redirect to :action => "edit", :id => params[:id]

As you can see, a symbol looks like a variable name, but it’s prefixed with a
colon. Examples of symbols include :action, :line_items, and :id. You can think of

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

4.2

Data Types ¢ 39

symbols as string literals magically made into constants. Alternatively, you
can consider the colon to mean “thing named,” so :id is “the thing named id.”

Now that we have used a few methods, let’s move on to how they are defined.

Methods

Let’s write a method that returns a cheery, personalized greeting. We'll invoke
that method a couple of times.

def say goodnight(name)
result = 'Good night,
return result

end

+ name

Time for bed..
puts say goodnight('Mary-Ellen') # => 'Goodnight, Mary-Ellen'
puts say goodnight('John-Boy"') # => 'Goodnight, John-Boy'

Having defined the method, we call it twice. In both cases, we pass the result
to the method puts(), which outputs to the console its argument followed by a
newline (moving on to the next line of output).

You don’t need a semicolon at the end of a statement as long as you put each
statement on a separate line. Ruby comments start with a # character and
run to the end of the line. Indentation is not significant (but two-character
indentation is the de facto Ruby standard).

Ruby doesn’t use braces to delimit the bodies of compound statements and
definitions (such as methods and classes). Instead, you simply finish the body
with the keyword end. The keyword return is optional, and if not present, the
results of the last expression evaluated will be returned.

Data Types

While everything in Ruby is an object, some of the data types in Ruby have
special syntax support, in particular for defining literal values. In these
examples, we've used some simple strings and even string concatenation.

Strings

The previous example also showed some Ruby string objects. One way to
create a string object is to use string literals, which are sequences of characters
between single or double quotation marks. The difference between the two
forms is the amount of processing Ruby does on the string while constructing
the literal. In the single-quoted case, Ruby does very little. With only a few
exceptions, what you type into the single-quoted string literal becomes the
string’s value.

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Chapter 4. Introduction to Ruby * 40

In the double-quoted case, Ruby does more work. First, it looks for substitu-
tions—sequences that start with a backslash character—and replaces them
with some binary value. The most common of these is \n, which is replaced
with a newline character. When you write a string containing a newline to
the console, the \n forces a line break.

Second, Ruby performs expression interpolation in double-quoted strings. In
the string, the sequence #{expression} is replaced by the value of expression.
We could use this to rewrite our previous method:

def say goodnight(name)

"Good night, #{name.capitalize}"
end
puts say goodnight('pa')

When Ruby constructs this string object, it looks at the current value of name
and substitutes it into the string. Arbitrarily complex expressions are allowed
in the #{...} construct. Here we invoked the capitalize() method, defined for all
strings, to output our parameter with a leading uppercase letter.

Strings are a fairly primitive data type that contain an ordered collection of
bytes or characters. Ruby also provides means for defining collections of
arbitrary objects via arrays and hashes.

Arrays and Hashes

Ruby’s arrays and hashes are indexed collections. Both store collections of
objects, accessible using a key. With arrays, the key is an integer, whereas
hashes support any object as a key. Both arrays and hashes grow as needed
to hold new elements. It's more efficient to access array elements, but hashes
provide more flexibility. Any particular array or hash can hold objects of dif-
fering types; you can have an array containing an integer, a string, and a
floating-point number, for example.

You can create and initialize a new array object using an array literal—a set
of elements between square brackets. Given an array object, you can access
individual elements by supplying an index between square brackets, as the
next example shows. Ruby array indices start at zero.

a=1[1, 'cat', 3.14] # array with three elements
al0] # access the first element (1)
al2] = nil # set the third element

array now [1, 'cat', nil]

You may have noticed that we used the special value nil in this example. In many
languages, the concept of nil (or null) means “no object.” In Ruby, that’s not the
case; nil is an object, just like any other, that happens to represent nothing.

http://pragprog.com/titles/rails4/errata/add
http://forums.pragprog.com/forums/rails4

Data Types ¢ 41

The method <<() is commonly used with arrays. It appends a value to its
receiver.

ages = []

for person in @people

ages << person.age
end

Ruby has a shortcut for creating an array of words.

a=['ant', 'bee', 'cat', 'dog', 'elk']
this is the same:
a = %w{ ant bee cat dog elk }

Ruby hashes are similar to arrays. A hash literal uses braces rather than
square brackets. The literal must supply two objects for every entry: one for
the key, the other for the value. For example, you may want to map musical
instruments to their orchestral sections.

inst section = {
:cello => 'string',
:clarinet => 'woodwind',
:drum => 'percussion',
:oboe => 'woodwind',
:trumpet => 'brass',
:violin => 'string'

}

The thing to the left of the => is the key, and that on the right is the corre-
sponding value. Keys in a particular hash must be unique—you can’t have
two entries for :drum. The keys and values in a hash can be arbitrary objects
—you can have hashes where the values are arrays, other hashes, and so on.
In Rails, hashes typically use symbols as keys. Many Rails hashes have been
subtly modified so that you can use either a string or a symbol interchangeably
as a key when inserting and looking up values.

The use of symbols as hash keys is so commonplace that starting with Ruby
1.9 there is a special syntax for it, saving both keystrokes and eyestrain.

inst section = {

cello: 'string',
clarinet: 'woodwind',
drum: 'percussion',
oboe: 'wood