

# **QUÍMICA**

## Tipos de soluções

## **Edson Mesquita**

© 2005 by Pearson Education

Capítulo 04





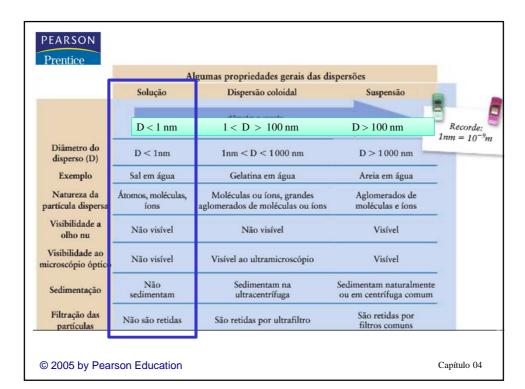






© 2005 by Pearson Education




## Soluções

Uma solução é uma mistura homogênea de substâncias puras (átomos, moléculas ou íons) na qual não há precipitação.

**Substância pura:** substância com composição característica e definida, com um conjunto definido de propriedades, exemplos: água, ferro (Fe), sal (NaCl), açúcar comestível, oxigênio  $(O_2)$ .

**Mistura:** são duas ou mais substâncias diferentes juntas em um mesmo sistema\*. As misturas podem ser classificadas em homogêneas (soluções) e heterogêneas.

© 2005 by Pearson Education





| Tipos de soluções         | Exemplo                                           |
|---------------------------|---------------------------------------------------|
| soluções gasosas          |                                                   |
| gás dissolvido em gás     | oxigênio dissolvido em nitrogênio                 |
| líquido dissolvido em gás | clorofórmio dissolvido em nitrogênio (vaporizado) |
| sólido dissolvido em gás  | gelo seco dissolvido em nitrogênio (sublimado)    |

© 2005 by Pearson Education

Capítulo 04



| soluções líquidas             |                                                  |
|-------------------------------|--------------------------------------------------|
| gás dissolvido em líquido     | dióxido de carbono dissolvido em água            |
| líquido dissolvido em líquido | etanol (álcool de cereais) dissolvido em<br>água |
| sólido dissolvido em líquido  | açúcar dissolvido em água                        |
| soluç                         | ões sólidas                                      |
| gás dissolvido em sólido      | hidrogênio dissolvido em paládio                 |
| líquido dissolvido em sólido  | mercúrio dissolvido em ouro                      |
| sólido dissolvido em sólido   | cobre dissolvido em níquel                       |

© 2005 by Pearson Education



## Concentração Comum (C)

É a relação entre a massa do soluto em gramas e o volume da solução em litros.  $C = \frac{m_1}{V}$ 

Onde:

C = concentração comum (g/L) m1= massa do soluto(g) V = volume da solução (L)

Exemplo:

Qual a concentração comum em g/L de uma solução de 3L com 60g de NaCl?

© 2005 by Pearson Education

Capítulo 04

PEARSON Prentice Hall

Concentração comum é diferente de densidade, apesar da fórmula ser parecida. Veja a diferença:

$$C \neq d$$

A densidade é sempre da solução, então:

$$d_{\text{solução}} \ = \frac{m_{\text{solução}}}{v_{\text{solução}}}$$

$$\mathbf{m}_{\text{solução}} = \mathbf{m}_{\text{soluto}} + \mathbf{m}_{\text{solvente}} = \mathbf{m}_1 + \mathbf{m}_2 = \mathbf{m}$$

Na concentração comum, calcula-se apenas a  $\rm m_{\rm soluto}$ , ou seja, m1.

© 2005 by Pearson Education





#### Interprete o rótulo do frasco.

Dê especial importância aos seguintes pontos:

- ✓ Qual é o solvente?
- ✓ Qual é o soluto?
- ✓ Quanto há de soluto em cada litro de solução?
- ✓ Quantos mg de soluto há em cada mL de solução?



© 2005 by Pearson Education

Capítulo 04



## Concentrações de soluções

#### **Molaridade**

- Solução = é o soluto dissolvido em solvente.
- Soluto: está presente em menor quantidade.
- A água como solvente = soluções aquosas.
- Altera-se a concentração utilizando-se diferentes quantidades de soluto e solvente.

Concentração em quantidade de matéria: Mols de soluto por litro de solução.

 Se soubermos a concentração em quantidade de matéria e o volume de solução, podemos calcular a quantidade de matéria (e a massa) do soluto.



© 2005 by Pearson Education



## Concentrações de soluções

## Concentração em quantidade de matéria

Concentração em quantidade de matéria =  $\frac{\text{quantidade de matéria de soluto}}{\text{volume de solução em litros}}$ 



© 2005 by Pearson Education

Capítulo 04



## Concentrações de soluções

**Exemplo:** Calcule a concentração em quantidade de matéria de uma solução preparada a partir da dissolução de 23,4g de Sulfato de sódio (Na<sub>2</sub>SO<sub>4</sub>) em água suficiente para perfazer 125mL de solução.

Dados: MM  $(Na_2SO_4) = 142g/mol$ 

R=1,32 mol/L

© 2005 by Pearson Education



## Molalidade

 $\acute{E}$  a relação entre a quantidade de matéria de soluto e a massa do solvente, em Kg.

Molalidade = quantidade de matéria soluto / massa do solvente

$$Molalidade = n_1/m_2 (Kg)$$

© 2005 by Pearson Education

Capítulo 04



#### **Exemplo:**

Calcule a molalidade da glicose num soro contendo 4 g de glicose  $(C_6H_{12}O_6)$  em 100 g de água.

© 2005 by Pearson Education



## Título ( ⊤ )

$$\tau = \frac{\mathbf{m}_1}{\mathbf{m}}$$

© 2005 by Pearson Education

Capítulo 04

Prentice Hall

O título não possui unidade. É adimensional. Ele varia tre 0 e 1. O percentual varia de 0 a 100.

$$\tau = \frac{\mathbf{m}_1}{\mathbf{m}} \qquad \tau = \frac{\mathbf{m}_1}{\mathbf{m}_1 + \mathbf{m}_2}$$

Para encontrar o valor percentual através do título:

$$%=100. \tau$$

Relação entre concentração comum, densidade e título:

$$d = \frac{C}{\tau}$$

Relação entre outras grandezas:

$$C = M.MM = 1000.d.\tau$$

Ou simplesmente:

$$C = M.MM$$
  $C = 1000.d.\tau$ 

© 2005 by Pearson Education



Em um recipiente temos 20g de H<sub>2</sub>SO<sub>4</sub> dissolvidos em 80g de água, o título da solução será de:

- a) 100
- b) 80
- c) 0,20
- d) 0,80

© 2005 by Pearson Education

Capítulo 04



## Percentual (%)

- É a relação entre soluto e solvente de uma solução dada em percentual (%).
- Percentual massa/massa ou peso/peso:

$$\% = \frac{m_1}{m} . 100$$

- Percentual massa/volume:

$$\% = \frac{m_1}{V} . 100$$

- Percentual volume/volume: 
$$\% = \frac{V_1}{V}$$
. 100

© 2005 by Pearson Education



## Fração Molar (x)

Fração em mols de soluto

$$X_1 = \frac{n_1}{n_1 + n_2}$$

$$X_1 = \frac{n_1}{n}$$

Fração em mols do solvente

$$\frac{n_2}{+n_2} \qquad \qquad X_2 = \frac{n_2}{n}$$

Onde:

x = fração molar da solução x1= fração molar do soluto x2 = fração molar do solvente n1= n°de mol do soluto n2 = n° de mol do solvente n = n° de mol da solução

$$x = \frac{n_1}{n}$$

Observação:

$$X_1 + X_2 = 1$$

© 2005 by Pearson Education

Capítulo 04



O hidróxido de sódio (NaOH), também conhecido como soda cáustica, tem ampla aplicação em diversas indústrias como, por exemplo, na fabricação de sabão, papéis e tecidos.

Considere o NaOH sólido e puro e calcule:

 a) a massa de NaOH necessária para se preparar 500 mL de solução 0,25 mol • L¹. Dado: Massa molar do NaOH = 40 g • mol⁴.

© 2005 by Pearson Education

## **DILUIÇÃO**

Prentice Hall consiste em adicionar mais solvente puro a uma determinada solução.

A massa de uma solução após ser diluída permance a mesma, não é alterada, porém a sua concentração e o volume se alteram. Enquanto o volume aumenta, a concentração diminui. Veja a fórmula:

$$M_1 \cdot V_1 = M_2 \cdot V_2$$

PEARSON

M1 = molaridade da solução 1 M2 = molaridade da solução 2 V1 = volume da solução 1 V2 = volume da solução 2

Para esta fórmula, sempre M1 e V1 são mais concentrados е М2 e V2 são mais diluídos.

© 2005 by Pearson Education

Capítulo 04



## **MISTURA DE SOLUÇÕES**

- De mesmo soluto: na mistura de soluções de mesmo soluto não há reação química entre estas soluções. Neste caso, o valor do volume final é a soma das soluções.

Solução 1+ Solução 2 = Solução Final

$$C_1 \cdot V_1 + C_2 \cdot V_2 = C_f \cdot V_f$$
  
 $M_1 \cdot V_1 + M_2 \cdot V_2 = M_f \cdot V_f$ 

C = concentração comum (g/L) M = molaridade (mol/L)V = volume(L)

Exemplo:

© 2005 by Pearson Education



#### Exemplo:

Qual a molaridade de uma solução de NaOH formada pela mistura de 60mL de solução a 5 mol/L com 300mL de solução a 2 mol/L?

© 2005 by Pearson Education

Capítulo 04



## Solubilidade

A dissolução de cloreto de sódio em água tem um limite. O que isso significa?



Dissolução de cloreto de sódio em água.

© 2005 by Pearson Education



#### Solubilidade de sólidos em líquidos

Considere a adição de 50 g de NaCl em 100 g de água a 20 °C, sob agitação com uma colher. Após repouso, nota-se que uma parte do sal não se dissolveu e está depositada no fundo do recipiente. Medidas mostram que houve dissolução de apenas 36 g do sal.

Essa é a quantidade máxima de NaCl que se dissolve naquelas condições e a solução é denominada saturada. A concentração da solução saturada indica a solubilidade máxima (ou apenas solubilidade) do cloreto de sódio a 20 °C.

A massa de sal que não dissolve (14 g) constitui o corpo de chão (ou corpo de fundo ou precipitado).





© 2005 by Pearson Education

Capítulo 04



Solubilidade ou coeficiente de solubilidade(S) é o número que indica a concentração da solução saturada de determinada substância. Exemplo:

Solubilidade de NaC&:

S = 36 g/100 g de água (20 °C)

© 2005 by Pearson Education



#### Solução insaturada

Quando a quantidade de soluto usado não atinge o limite de solubilidade, ou seja, a quantidade adicionada é inferior ao coeficiente de solubilidade.

#### Solução saturada

Quando o solvente já dissolveu toda a quantidade possível de soluto (ou disperso), e toda a quantidade agora adicionada não será dissolvida e ficará no fundo do recipiente

© 2005 by Pearson Education

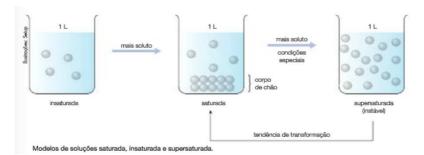
Capítulo 04



#### Solução supersaturada

Acontece quando o solvente e soluto estão em uma temperatura em que seu coeficiente de solubilidade (solvente) é maior, e depois a solução é resfriada ou aquecida, de modo a reduzir o coeficiente de solubilidade.

Quando isso é feito de modo cuidadoso, o soluto permanece dissolvido, mas a solução se torna extremamente instável.


Qualquer vibração faz precipitar a quantidade de soluto em excesso dissolvida

© 2005 by Pearson Education



#### · Algumas características da solubilidade

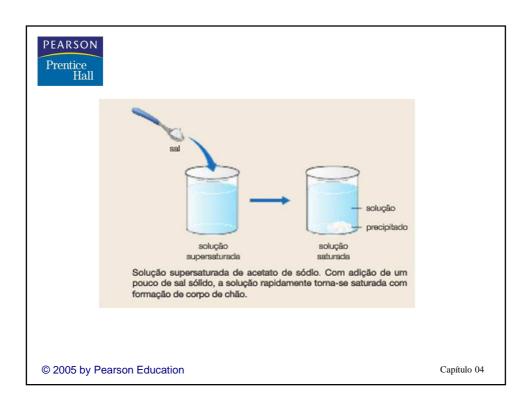
I. Tendo uma solução saturada como referência, as soluções de menor concentração estarão insaturadas e as de maior concentração são chamadas supersaturadas.



© 2005 by Pearson Education

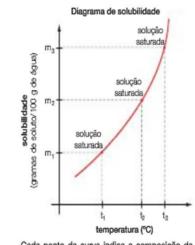
Capítulo 04




#### Soluções supersaturadas

São sistemas em geral pouco estáveis. Alterações das condições (pressão, temperatura, agitação, adição de mais soluto) podem destruir a solução supersaturada, transformando-a em uma solução saturada. Nesse processo haverá a deposição de soluto – na forma de corpo de chão (para solutos sólidos) ou saída de um gás (para solutos gasosos) – até que a quantidade de soluto seja a mesma existente na solução saturada.




Modelo de formação de uma solução supersaturada de KNO<sub>3</sub>.

© 2005 by Pearson Education



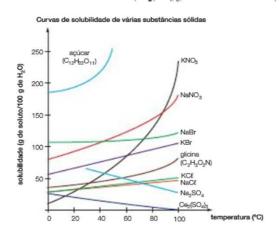
#### • Diagramas de solubilidade

Para cada soluto há um diagrama que mostra a composição da solução saturada em diferentes temperaturas. Esse diagrama mostra a curva de solubilidade da substância.



Cada ponto da curva indica a composição da solução saturada a uma dada temperatura.

# Três tipos básicos de curvas de solubilidade


 A — dissolução favorecida pelo aquecimento;
 B — solubilidade com pouca influência da temperatura;

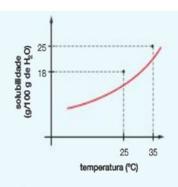
temperatura (°C)

C — dissolução favorecida pelo resfriamento.

© 2005 by Pearson Education

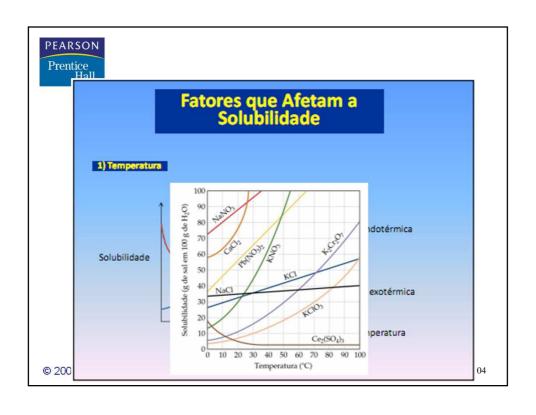
O diagrama abaixo mostra as curvas de solubilidade de várias substâncias sólidas. Note que, em geral, a solubilidade aumenta com o aquecimento da solução. Poucas substâncias têm sua solubilidade diminuída com o aquecimento; entre elas, destacamos o sulfato de cério (Ce<sub>2</sub>(SO<sub>4</sub>)<sub>3</sub>) e o sulfato de sódio (Na<sub>2</sub>SO<sub>4</sub>).

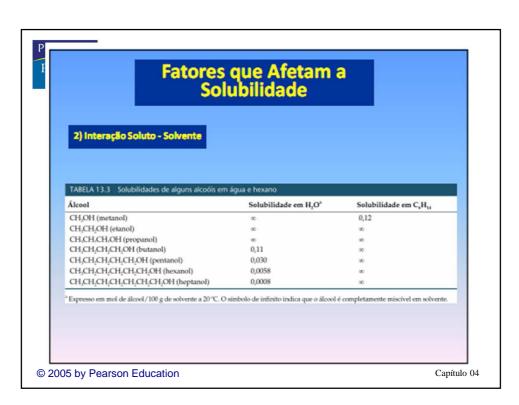



© 2005 by Pearson Education

Capítulo 04

#### PEARSON


- Mistura-se 90 g de um sal em 200 g de água a 25 °C. Após forte agitação, a mistura é deixada em repouso durante algumas horas. Nota-se a existência de sólido depositado. Efetua-se uma filtração e mede-se 10 g de resíduo sólido no filtro.
- a) A solução obtida está saturada ou não? Por quê?
- b) Qual a solubilidade do sal nas unidades massa de sal/100 g de água?
- 2. Um sólido iônico tem solubilidade igual a 80 g/L, a 25 °C. Nessa temperatura, adicionando 16 g do sólido em água suficiente para 200 mL de solução, obteremos uma solução:
  - a) insaturada
- b) saturada com 4 g de precipitado.
- c) saturada sem precipitado.
- d) supersaturada.
- e) saturada com 16 g de precipitado.
- 3. Dada a curva de solubilidade de um sal em água:


© 2005 by Pearson Education



pode-se concluir que:

- a) o resfriamento da solução favorece a dissolução do sal.
- b) a 25 °C, 25 g de sal em 100 g de H<sub>2</sub>O formam uma solução insaturada.
- c) a 35 °C, 18 g de sal em 100 g de H<sub>2</sub>0 formam uma solução saturada.
- d) abaixo de 25 °C, a solubilidade do sal é maior que 18 g de sal/100 g de H.O.
- e) a 25 °C, 18 g de sal saturam 100 g de H₂O, sem formação de precipitado.







## Fatores que Afetam a Solubilidade

#### 3) Concentração da Solução

- Solução insaturada ⇒ contém menos soluto do que o limite de solubilidade.
- Solução saturada ⇒ contém soluto na quantidade limite de solubilidade.
- Solução saturada com corpo de fundo ⇒ contém mais soluto que o limite de solubilidade, ocasionando a formação de um corpo de fundo (precipitado).
- Solução supersaturada ⇒ contém mais soluto que o limite de solubilidade, porém o sistema mantém-se cineticamente homogêneo em condições especiais.



Formação do corpo de fundo

© 2005 by Pearson Education