
JAVA FUZZY LOGIC TOOLBOX FOR INDUSTRIAL PROCESS CONTROL

Bruno Sielly J. Costa∗, Clauber G. Bezerra†, Luiz Affonso H. G. de Oliveira‡

∗Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Norte
Campus Caicó

Caicó, RN, Brasil
†Instituto Federal de Educação Ciência e Tecnologia do Rio Grande do Norte

Campus Santa Cruz
Santa Cruz, RN, Brasil

‡Universidade Federal do Rio Grande do Norte
Departamento de Engenharia de Computação e Automação

Natal, RN, Brasil

Emails: bruno.costa@ifrn.edu.br, clauber.bezerra@ifrn.edu.br, affonso@dca.ufrn.br

Abstract— This paper describes the design, implementation and application of a fuzzy logic toolbox for in-
dustrial process control based on Java language, supporting communication through the OPC industrial protocol.
The toolbox is written in Java and is completely independent of any other platforms. It provides easy and func-
tional tools for modelling, building and editing complex fuzzy inference systems and using such logic systems to
control a large variety of industrial processes.

Keywords— fuzzy logic, industrial process control, OPC.

1 Introduction

Since the decade of 1970 with the application im-
plemented by Mamdani (1974), the fuzzy logic is
being used on control of industrial processes of a
diversity of kinds.

One of the main potentialities of fuzzy logic,
when compared to other schemes that manipula-
tes inaccurate data, such as neural networks, is
that its bases of knowledgement, which are in the
format of inference rules, are very easy of examina-
tion and understanding. This format of rule also
makes easy maintaining and updating the base of
knowledgement.

The purpose of this work is to present a com-
plete and powerful environment for manipulating
the fuzzy theory, applying its bases and concepts
on industrial control tasks, through a set of tools
of rich content and high level of integration with
real industrial processes.

In the literature, we are able to find a few tool-
boxes implemented to work with fuzzy logic. Hall
and Hathaway (1996) describes a fuzzy logic tool-
box integrated to MathWorks Matlab platform,
with a friendly graphic user interface for building
and editing fuzzy inference systems. Chuan et al.
(2004) presents a fuzzy logic toolbox based on
Scilab language, and shows it as a free alterna-
tive to the software from MathWorks.

2 Fuzzy Logic

Two of the main aspects of the imperfection of in-
formation are the imprecision and the uncertainty.
This two characteristics are intrinsically linked
and opposite to each other. The most known the-

ories to treat imprecision and uncertainty are the
set theory and probabilities theory, respectively.

The fuzzy set theory started to be developed
at the decade of 1960 by Zadeh (1965), intending
to treat the nebulous aspect of the information.
This theory, being less restrictive, may be consi-
dered more suitable for treating information pro-
vided by human beings than other theories.

The fuzzy logic is an artificial intelligence
technique, which incorporates the capacity of a
human specialist to modelling the operation of a
control system, working similar to a deductive rea-
soning, controlling industrial processes with non-
linear characteristics, relating plant variables des-
cribed on the controller. The fuzzy logic allows
the treatment of expressions that involves quanti-
ties accurately.

To obtain the mathematical formalization of
a fuzzy set, is needed to remember that any fuzzy
set may be characterized by a membership func-
tion, whose definition is given below:

Definition 1: A fuzzy subset A from the universe
U is characterized by a membership function µA :
U→ [0, 1], where µA indicates how pertinent the
element x is on A, and also may be interpreted
as the degree of compatibility to the associated
attribute.

A = {x, µA(x) | x ∈ U and µA : U→ [0, 1]}

Definition 2: The union between two fuzzy sets
A and B may be defined as the fuzzy set F , whose
membership function is given by:

x ∈ U | µA∪B(x) = max{µA(x), µB(x)}

XVIII Congresso Brasileiro de Automática / 12 a 16 Setembro 2010, Bonito-MS.

207



Definition 3: The intersection between two fuzzy
sets A and B may be defined as the fuzzy set F ,
whose membership function is given by:

x ∈ U | µA∩B(x) = min{µA(x), µB(x)}

Definition 4: An aggregation is a n-order opera-
tion, A [0, 1]n → [0, 1], satisfying:

i) A(0, 0, . . . , 0) = 0

ii) A(1, 1, . . . , 1) = 1

iii) A(x1, x2, . . . , xn) ≥ A(y1, y2, . . . , yn), if xi ≥
yi ∀i

Definition 5: A linguistic variable X in the uni-
verse U, is a variable that assumes values descri-
bed by linguistic concepts, represented by fuzzy
sets of U.

A fuzzy rule-based system is valid by linguis-
tically presenting very complex relations, or rela-
tions not enough well understood to be described
by accurate mathematical models. A fuzzy infe-
rence system may be illustrated as in figure 1.

Figure 1: Fuzzy Inference System

The inference may be synthesized in four
steps. In a first instance, the degrees of com-
patibilities of the variables are compared with its
respective antecedents. Usually, fuzzy inference
systems receive accurate inputs. In that case, it is
necessary to use a fuzzification interface, relating
accurate values to a fuzzy value. The fuzzy value
is obtained through membership functions desig-
nated to each system input variable.

After the fuzzification step, a mechanism
called inference engine is responsible to perform
system inferences, supported by a knowledgement
base, subdivided in data base and rules base. The
data base stores the definitions about discretiza-
tion and normalization of the speech universe, as
well the definitions about the membership func-
tions of fuzzy terms. The rules base is composed
of If-Then structures, previously defined in the in-
ference system. The inference engine is the entity
responsible to determine the degree of activation
of each rule, and generate a fuzzy value to output.

Based in the degree of activation, is deter-
mined the consequence produced by a specific

rule. Too often fuzzy inference systems contain
more than one rule. Each rule produces a conse-
quence, and the global result from the inference
step will depend on the combination of those con-
sequences. This step is called aggregation, which
has as result a fuzzy set.

The last step of the inference process is the
defuzzification. The output processor generates a
fuzzy set that describes the system output, and
is represented by a real number. The Mamdani’s
fuzzy inference method, which output is a fuzzy
set, and the Takagi-Sugeno method, which is com-
putationally less expensive, are the most used in-
ference methods.

The Mamdani’s procedure comprehends the
identification of the variables domain in a
correspondent at the speech universe. The fuzzy
output evolves to a non-fuzzy output. There are
plenty of methods for defuzzification, each one
presenting suitable results for specific situations.
The most used defuzzification methods in the lite-
rature are centroid, bisector, middle of maximum,
smallest of maximum and largest of maximum.

At the Takagi-Sugeno’s method, the conse-
quent of each rule is a function of input variables,
and the system output is a real number. There is
thus no need for using an output processor. The
output level zi of each rule is weighted by the firing
strength wi of the rule. The final output from the
system z is the weighted average of all rule out-
puts, computed as

z =

n∑
i=1

wizi

n∑
i=1

wi

where n is the number of fuzzy rules.

3 Ole for Process Control

OPC is the acronym to Ole for Process Con-
trol. OPC is an open communication protocol,
based on OLE COM/DCOM technology from Mi-
crosoft, which aims to allow the vertical integra-
tion among different systems into an organiza-
tion (Opc-Foundation, 2003).

OPC consists of a server program, usually
provided by the Programmable Logic Controller
manufacturer, which communicates with PLCs
through a proprietary protocol and provides data
in OPC standard. The client instead, only needs
the OPC client driver installed and configured.
The server and the client may be installed on the
same machine simultaneously.

The figure 2 illustrates a basic example of a set
of applications accessing data over the network,
through well defined OPC interfaces.

XVIII Congresso Brasileiro de Automática / 12 a 16 Setembro 2010, Bonito-MS.

208



Figure 2: Applications working with many OPC
servers

4 Motivations of this work

MathWorks Matlab Toolbox (MathWorks, 2009)
for fuzzy systems presents a good approach to
building fuzzy sets and fuzzy rule-based systems,
with a powerful graphical user interface, which
makes very easy the building/editing process.
Nevertheless, this alternative is still not suitable
for industrial environments.

The fuzzy logic toolbox from Matlab does not
have intrinsically an integration tool for industrial
processes and protocols, not being possible to di-
rectly read and write data from the plant. Al-
though there are tools for that kind of connection
on Matlab platform, this makes the process more
difficult to implement and manage. Another cru-
cial factor is that Matlab is a very expensive soft-
ware, specially for non-academic environments.

The system proposed in this paper, presents
itself as a good alternative for industrial fuzzy
control, being a proprietary platform-independent
software and able to communicate directly with
the industrial plant, and linking its input and out-
put variables to the process variables.

5 Details of Implementation

The system was completely developed in Java lan-
guage. All parameters of configuration for the
fuzzy inference system in execution are stored in
a structure file, saved with a ‘.FUZ’ extension.

The fuzzy data saved and loaded in memory
for execution of the system may be divided in four
distinct groups, as shown on figure 3.

Basic Data: Include and/or methods, impli-
cation, aggregation and defuzzification methods.
Most of the important methods were implemented
in the toolbox, as listed below:

• And methods: minimum, product;

• Or methods: maximum, probabilistic or;

Figure 3: Java Fuzzy Logic Toolbox Data Struc-
ture

• Implication: minimum, product;

• Aggregation: maximum, sum, probabilistic
or;

• Defuzzification: centroid, bisector, middle of
maximum, largest of maximum, smallest of
maximum.

Input and Output Data: Made up of several
input/output entries. Each input/output variable
may be linked or not to a tag from OPC, and each
variable has a set of associated membership func-
tions. Three of the most used types of function
were implemented in this work:

• Triangular Function: three parameters are
defined to model the function. t1 represents
the first non-zero point, t2 the middle point
and t3 the last non-zero point of the trian-
gle. Mathematically, the triangular function
is defined as follows:

fF (x) =


x−t1
t2−t1 , if t1 ≤ x ≤ t2
t3−x
t3−t2 , if t2 ≤ x ≤ t3
0, otherwise

• Trapezoidal Function: four parameters are
defined to model the function. r1 represents
the first non-zero point, r2 and r3 the interval
where the function pertinence is equals to 1,
and r4 the last non-zero point of the trapeze.
Mathematically, the trapezoidal function is
defined as follows:

fF (x) =


x−r1
r2−r1 , if r1 ≤ x ≤ r2
1, if r2 ≤ x ≤ r3
r4−x
r4−r3 , if r3 ≤ x ≤ r4
0, otherwise

XVIII Congresso Brasileiro de Automática / 12 a 16 Setembro 2010, Bonito-MS.

209



• Gaussian Function: often referred as Gauss
distribution. Three parameters are defined
to model the function. g1 and g2 represents
the function bounds and g3 the variance, in-
dicating the function width. In this work, the
Gaussian function is defined as follows:

fF (x) = 2
5
√

2π
exp

(
(−x+0.5g2+0.5g1)

2

2g3

)

Fuzzy Rules: If-Then inference rules, associ-
ated to input/output variables, logic connectors
(and/or/not) and fuzzy values.

6 System Description

The Java Fuzzy Logic Toolbox was completely
conceived based on windows and simplified
graphic environment, making intuitive the cre-
ation of fuzzy inference systems. The developed
system has basically five main graphic environ-
ments for editing, viewing and running fuzzy in-
ference systems:

• Basic Fuzzy Inference System Editor: mani-
pulates the high-level information about the
system, such as number and names of vari-
ables, links to OPC tags, basic configuration
parameters;

• Membership Function Editor: allows ad-
vanced edition of membership functions for
input/output variables;

• Fuzzy Inference Rules Editor: tool for au-
tomatically creating inference rules based on
system variables and fuzzy values associated;

• Rules Viewer: used as a diagnostic, it can
show which rules are active, or how individual
membership function shapes are influencing
the results;

• Control Module: interface between an exis-
tent fuzzy inference system and the process.
The main screens are shown at figure 4.

Such graphic environments are dynamically
linked, and all changes made using one of them
are transmitted to the other.

7 System Validation

For validating the Java Fuzzy Toolbox, two
approaches were utilized. In a first moment, an
existing problem described by Sankar and Kumar
(2006) was modelled in both toolboxes: Matlab
Toolbox and Java Toolbox. The results were com-
pared by graphical analysis. In a second moment,
a control task was implemented on Java Fuzzy
Toolbox, and the results are shown in subsections
below.

Figure 4: Main Screens of Java Fuzzy Toolbox:
a) Basic Inference System Editor b) Membership
Function Editor c) Rules Editor d) Rules Viewer
e) Control Module

7.1 Matlab Comparison

The example problem focuses on a new approach
to braking system in train, by using fuzzy logic.
Generally the Indian railways use two persons to
operate a train and they employ a manual proce-
dure for stopping the train in each station. The
proposed fuzzy logic controller helps in reduction
of manpower for the train operation.

• Input Variables - Distance and Speed

• Output Variables - Braking power (or % of
braking)

• Membership Functions (Shown at figure 5)

– Distance: Very Close, Close, Far, Very
Far;

– Speed: Very Slow, Slow, Fast, Very Fast;

– Braking: Very Light, Light, Heavy, Very
Heavy;

• Inference Rules

1. If distance is VERY CLOSE and
speed is VERY SLOW then braking
is LIGHT

2. If distance is VERY CLOSE and speed
is SLOW then braking is HEAVY

3. If distance is VERY CLOSE and
speed is FAST then braking is VERY
HEAVY

4. If distance is VERY CLOSE and
speed is VERY FAST then braking is
LIGHT

XVIII Congresso Brasileiro de Automática / 12 a 16 Setembro 2010, Bonito-MS.

210



5. If distance is CLOSE and speed
is VERY SLOW then braking is
LIGHT

6. If distance is CLOSE and speed is
SLOW then braking is LIGHT

7. If distance is CLOSE and speed is
FAST then braking is HEAVY

8. If distance is CLOSE and speed is
VERY FAST then braking is VEAR
HEAVY

9. If distance is FAR and speed is VERY
SLOW then braking is LIGHT

10. If distance is FAR and speed is SLOW
then braking is VERY LIGHT

11. If distance is FAR and speed is FAST
then braking is LIGHT

12. If distance is FAR and speed is VERY
FAST then braking is HEAVY

13. If distance is VERY FAR and speed is
VERY SLOW then braking is VERY
LIGHT

14. If distance is VERY FAR and speed
is SLOW then braking is VERY
LIGHT

15. If distance is VERY FAR and speed is
FAST then braking is LIGHT

16. If distance is VERY FAR and speed is
VERY FAST then braking is LIGHT

The other chosen parameters for the fuzzy sys-
tem were: And Method = minimum, Implica-
tion = minimum, Aggregation = maximum and
Defuzzification = centroid. Those parameters
were used in all implementations ahead.

To comparing results, two sets of one-
hundred randomic real numbers were generated
and applied to each input variable for both sys-
tems. The graphics below represents the output
forms, described as follows: the figure 6 illustrates
the outputs (Braking Power) for a Mamdani’s in-
ference system, with the red series representing
the Java Toolbox output and the blue series repre-
senting the Matlab Toolbox output; the figure 7
illustrates the outputs for a Takagi-Sugeno’s infe-
rence system, with the red series representing the
Java Toolbox output and the blue series repre-
senting the Matlab Toolbox output; the figure 8
shows the positive percent error resulting from
Mamdani’s system implemented on Java toolbox
compared to Matlab Toolbox; the figure 9 shows
the positive percent error resulting from Takagi-
Sugeno’s system implemented on Java toolbox
compared to Matlab Toolbox.

7.2 Control Task

At this subsection, a real control problem was used
to validate the Java Toolbox.

Figure 5: Membership Functions for Braking Sys-
tem in Trains: a) Distance b) Speed c) Braking
Power

Figure 6: Outputs for Mamdani’s Inference Sys-
tem

Figure 7: Outputs for Takagi-Sugeno’s Inference
System

XVIII Congresso Brasileiro de Automática / 12 a 16 Setembro 2010, Bonito-MS.

211



Figure 8: Error for Mamdani’s system

Figure 9: Error for Takagi-Sugeno’s system

A common control problem in petrochemical
process industries is the control of liquid levels in
storage tanks and reaction vessels. In minor pro-
portions, we can solve this problem using an ex-
periment plant, referenced by Quanser Coupled
Water Tanks (Quanser, 2004).

The “Two Tank Module” consists of a pump
with a water basin. The pump thrusts water verti-
cally to two quick connect, normally closed orifices
“Out1” and “Out2”. Two tanks mounted on the
front plate are configured such that flow from the
first tank flows into the second tank and outflow
from the second tank flows into the main water
basin. The case study for the Java Fuzzy Toolbox
is design an intelligent control system to regulate
the water level in the second tank, with the set-
point equals to 10 centimeters. For this problem,
three situations were implemented for results com-
parison.

In the first situation, the control problem was
treated with a PI controller, implemented on a
PLC, model ZAP 900 from HI Tecnologia (HI-
Tecnologia, 2009). In that case, the proportional
gain KP was fixed in 10 and the integral time Ti
was fixed in 0.5.

In a second moment, a direct fuzzy control
was applied to the plant. The model of the di-
rect fuzzy controller is described below, and the
membership functions are shown on figure 10.

• Input Variables - Error, Error Variation

• Output Variable - Output Voltage

• Membership Functions

– Error: Negative High, Negative Low,
Zero, Positive Low, Positive High;

– Error Variation: Negative, Zero, Posi-
tive;

– Output Voltage: Zero, Low, High;

• Inference Rules

1. If error is NEGATIVE HIGH and
errorvariation is NEGATIVE then
outputvoltage is HIGH

2. If error is NEGATIVE HIGH
and errorvariation is ZERO then
outputvoltage is HIGH

3. If error is NEGATIVE HIGH and
errorvariation is POSITIVE then
outputvoltage is LOW

4. If error is NEGATIVE LOW and
errorvariation is NEGATIVE then
outputvoltage is LOW

5. If error is NEGATIVE LOW
and errorvariation is ZERO then
outputvoltage is LOW

6. If error is NEGATIVE LOW and
errorvariation is POSITIVE then
outputvoltage is ZERO

7. If error is ZERO and errorvariation
is NEGATIVE then outputvoltage is
LOW

8. If error is ZERO and errorvariation is
ZERO then outputvoltage is ZERO

9. If error is ZERO and errorvariation
is POSITIVE then outputvoltage is
ZERO

10. If error is POSITIVE LOW then
outputvoltage is ZERO

11. If error is POSITIVE HIGH then
outputvoltage is ZERO

The last experiment consisted in a simple
adaptive PID controller. In this work, there is
a Intelligent Control block (inserted in Supervi-
sion layer) that sets the proportional gain KP
according to the error value. The block diagram of
this approach is shown on figure 11 and the archi-
tecture of the control system is shown at figure 12.

The last fuzzy controller is described as
follows, and the membership functions for the in-
put and output variables are shown on figure 13.

XVIII Congresso Brasileiro de Automática / 12 a 16 Setembro 2010, Bonito-MS.

212



Figure 10: Membership Functions for Direct
Fuzzy Control: a) Error b) Error Variation c)
Control Signal

Figure 11: Block Diagram of the Adaptive Control
Approach

Figure 12: Control System’s Architecture

• Input Variable - Error

• Output Variable - KP

• Membership Functions

– Error: Small, Big, Very Big;

– KP : Low, High, Very High;

• Inference Rules

1. If error is SMALL then kp is LOW

2. If error is BIG then kp is HIGH

3. If error is VERY BIG then kp is
VERY HIGH

Figure 13: Membership Functions for Fuzzy PID
Control: a) Error b) KP

For results comparison, the figure 14 illus-
trates the tank level (cm) behaviour for the
three situations above, the figure 15 measures
the positive error resulting from the three control
approaches and the table 1 shows the detailed re-
sulting values.

Figure 14: Tank Level (cm) Behaviour for Three
Different Control Approaches

XVIII Congresso Brasileiro de Automática / 12 a 16 Setembro 2010, Bonito-MS.

213



Figure 15: Positive Error from Three Different
Control Approaches

Table 1: Detailed Result Values
Controller Overshoot (%) Settling

Time at
2% (s)

Rise
Time (s)

PID 125.0 27.0 2.5
Fuzzy 24.0 ∞ 3.0

Fuzzy PID 34.0 15.0 6.0

8 Conclusion

The Java Fuzzy Logic Toolbox is a useful software
for constructing fuzzy logic systems and apply-
ing them on control tasks for industrial processes.
Another feature of the toolbox is that it is a
proprietary platform-independent, based on Java,
with a powerful functions set and friendly inter-
face. The results shown that the implemented sys-
tem generated high accurate outputs, compared
with Matlab Fuzzy Toolbox. The Java Toolbox
was also efficient solving the tank level control
problem, specially if cascaded to a PI controller.
The OPC protocol compatibility increments the
field of applicability and the space of usefulness
of this tool, allowing direct communication with
common industrial processes.

Acknowledgements

Thanks to Computing Engineering and Automa-
tion Laboratory and Petroleum Automation La-
boratory, both in Federal University of Rio
Grande do Norte for providing the necessary
structure to developing this research.

References

Chuan, F., Zengqi, S. and Ling, S. (2004). De-
sign and implementation of scilab fuzzy logic
tooibox, IEEE International Symposium on
Computer Aided Control Systems Design.

Gharieb, W. and Nagib, G. (2001). Fuzzy inter-
vention in pid controller design, IEEE Inter-
national Symposium On Industrial Electro-
nics.

Hall, L. and Hathaway, R. (1996). Fuzzy logic
toolbox - software review, IEEE Transactions
on Fuzzy Systems, Vol. 4.

HI-Tecnologia (2009).
http://www.hitecnologia.com.br.

Mamdani, E. (1974). Application of fuzzy algo-
rithms for simple dynamic plant, Proceedings
of Institute of Electrical Engineering.

MathWorks (2009). Matlab and simulink
for technical computing. Available on
http://www.mathworks.com.

Opc-Foundation (2003). Opc data access cus-
tom interface specification 3.0. Available on
http://www.opcfoundation.org.

Pedrycz, W. (1993). Fuzzy Control and Fuzzy
Systems, 2nd edition edn, Research Studies
Press.

Quanser (2004). Coupled tanks user manual.

Ramakrishna, G. and Rao, N. D. (1999). Im-
plementation of a fuzzy logic scheme for q/v
control in distribution systems, IEEE Power
Engineering Society 1999 Winter Meeting .

Sankar, G. and Kumar, S. (2006). Fuzzy logic
based automatic braking system un trains,
India International Conference on Power
Electronics.

X. Fang, T. Shen, X. W. and Zhou, Z. (2008).
Application and research of fuzzy pid in tank
systems, Fourth International Conference on
Natural Computation.

Zadeh, L. (1965). Fuzzy sets, Information and
Control 8: 338–353.

XVIII Congresso Brasileiro de Automática / 12 a 16 Setembro 2010, Bonito-MS.

214


	fechar: 


