APOSTILA Assunto: Funções Inorgânicas Disciplina: Química I Curso: INSTITUTO Turma/Turno: Professora: Belkise Moreira **FEDERAL** Rio Grande do Norte Campus Discente: São Paulo do Potengi

1. INTRODUÇÃO ÀS FUNÇÕES INORGÂNICAS

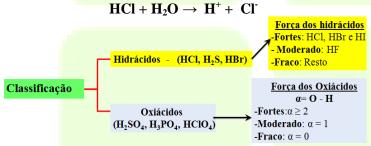
1.1 Soluções eletrolíticas e não eletrolíticas

Em 1884, Svante Arrhenius propôs a Teoria da Dissociação Iônica.

Segundo essa teoria, algumas substâncias dissolvidas em água se dividem em partículas cada vez menores (íons) e podem conduzir ou não corrente elétrica.

Soluções que conduzem eletricidade Eletrolítica (Compostos iônicos)

Soluções que NÃO conduzem eletricidade



1.2 Ácidos de Arrhenius

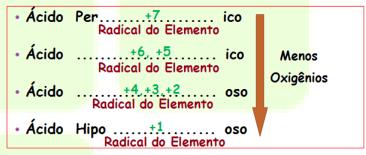
- · "Primeira" teoria sobre ácido-base;
- Proposta na década de 1880:
- · Exclusividade para meio aquoso.

com Arrhenius, ácidos são: substâncias De acordo compostas que em meio aquoso liberam como cátion o Hidrogênio (H⁺). Equação de Ionização dos ácidos:

Nomenclatura dos Hidrácidos

Seguem a seguinte regra:

Ácido


Radical do Elemento

Exemplos:

HCl=_____ HBr = _____ HI= _____ HF= _____

Nomenclatura dos Oxiácidos

Seguem as seguintes regras:

Exemplos:

H₃PO₂ HClO₄ HNO₃ H₂SO₃

- Ácidos Importantes:
- -Ácido sulfúrico H₂SO₄
- –Ácido clorídrico HCl
- -Ácido nítrico HNO₃

1.3 Bases de Arrhenius

Segundo Arrhenius, base é: toda substância que, dissolvida em água, dissocia-se fornecendo como ânion exclusivamente OH⁻ (hidroxila ou oxidrila).

Não existem bases com mais de quatro hidroxilas por molécula

Nomenclatura das bases

Hidróxido de Nome do cátion

Exemplos:

NaOH= $Mg(OH)_2=$ $Al(OH)_3 =$

> Força das bases -Fortes: Família 1A e 2A - Fracas: Resto

- Bases Importantes:
- –Hidróxido de sódio NaOH;
- -Hidróxido de cálcio Ca(OH)₂;
- −Hidróxido de amônio NH₄OH;

1.4 Escala para medir o caráter ácido e básico: pH

A escala do **pH** (**Potencial Hidrogeniônico**) mede quão

ÁCIDA ou BÁSICA é uma substância.

Indicador ácido-base é uma substância que apresenta uma determinada coloração em meio ácido e outra em meio básico.

1.5 Óxidos

Óxido: é todo composto binário oxigenado, no qual o oxigênio é o elemento mais eletronegativo.

Exemplos: CO₂, H₂O, ZnO Fe₂O₃

Óxidos ácidos: óxidos que em H₂O formam ácidos. Exemplos:

O + Ametal (CO₂; NO₃; SO₂; PO₄; ClO)

O + Metal (+5A; +6A ou +7A)

Exemplos:

O + Metal (+1A; +2A ou +3A)

Nomenclatura dos óxidos

(Prefixo) + óxido de (prefixo) + elemento

Regra geral:

Para metais:

CO -monóxido de monocarbono N₂O₅ -pentóxido de dinitrogênio

Na₂O -óxido de sódio Al₂O₃ -óxido de alumínio

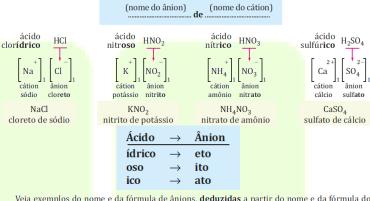
P₂O₃ -trióxido de difosforo

Atenção aos prefixos

mono = um di dois três tri = quatro tetra penta = cinco = seis hexa hepta

- Óxidos Importantes:
- -Monóxido de dihidrogênio (Água) H₂O;
- -Peróxido de oxigênio (Água oxigenada)— H₂O₂;
- -Óxido de cálcio CaO;

1.6 Sais


São compostos que em água se dissocia liberando um cátion \neq de H⁺ e um ânion \neq de OH⁻.

Exemplo: NaCl \rightarrow Na⁺ + Cl⁻

Neutralização

 $2HCl + Mg(OH)_2 \leftrightarrow MgCl_2 + 2H_2O$

Nomenclatura dos sais

Veja exemplos do nome e da fórmula de ânions, deduzidas a partir do nome e da fórmula dos ácidos correspondentes*:

Ácido	Ânion	Ácido	Ânion	Ácido	Ânion
ídrico	eto	oso	ito	ico	ato
HF	F ⁻	H_2SO_3	SO ₃ ²⁻	H_2SO_4	SO ₄ ²⁻
fluorídrico	fluoreto	sulfur oso	sulfito	sulfúrico	sulfato
HCl	Cl ⁻	HNO ₂	NO_2^-	HNO ₃	NO_3^-
clorídrico	clor eto	nitroso	nitr ito	nítr ico	nitrato
HBr	Br ⁻	HClO ₂	ClO ₂	HClO ₃	ClO ₃
bromídrico	brometo	cloroso	clor ito	clór ico	clorato
HI	I_	HClO	ClO ⁻	HClO ₄	ClO ₄
iod ídrico	iodeto	hipoclor oso	hipoclor ito	perclór ico	perclorato
HCN	CN ⁻	H ₃ PO ₃ **	HPO ₃ ²⁻	H ₃ PO ₄	PO ₄ ³⁻
cian ídrico	cianeto	fosfor oso	fosfito	fosfór ico	fosfato
H ₂ S	S ²⁻	H ₃ PO ₂ ***	$H_2PO_2^-$	CH ₃ COOH	CH ₃ COO ⁻
sulfídrico	sulf eto	hipofosforoso	hipofosf ito	acético	acetato

- Sais Importantes:
 - -Carbonato de cálcio CaCO₃;
 - -Hipoclorito de sódio— NaClO;
 - -Cloreto de Sódio NaCl;

1.7 Teorias modernas de ácido e base

A teoria de *Arrhenius* foi utilizada durante muito tempo para explicar o conceito de ácido (libera H⁺) e base (libera OH⁻). Óxidos básicos: óxidos que em H₂O formam bases. Mas surgiram novas teorias relacionadas a ácido e base. São as chamadas teorias modernas ácido-base. São elas:

Ácido: é a espécie química que recebe o par de e-. Base: é a espécie química que doa o par de e-.

doa recebe
:NH₃ + H+
$$\leftrightarrow$$
 NH₄+
base ácido

Comparação entre as teorias

Bons Estudos!

	12ª LISTA DE EXCERCÍCIOS Assunto: Funções Inorgânicas				
INSTITUTO FEDERAL	Disciplina: Química I Professora: Belkise Moreira	Curso: Turma/Turno:			
Rio Grande do Norte Campus São Paulo do Potengi	Discente:	Turna Turno.			

OUESTÕES

- 1- Segundo Arrhenius, qual é o íon responsável pelas propriedades dos ácidos? E das bases?
- 2- Determine o nome dos seguintes ácidos:
- a) HCl b) HClO c) HClO₂ d) HClO₃ e) HClO₄ f) H₂S
- 3- Determine o nome de cada base a seguir:
- a) LiOH b) Ba(OH)₂ c) Fe(OH)₂ d) Fe(OH)₃ e) $Sr(OH)_2$ f) CsOH
- 4- Determine a força de cada ácidos abaixo:
- a) HCl b) HClO c) HClO₂ d) HClO₃ e) HClO₄ f) H₂S
- 5- Determine a força das seguintes bases:
- a) LiOH b) Ba(OH)₂ c) Fe(OH)₂ d) Fe(OH)₃ f) CsOH e) $Sr(OH)_2$
- 6- Observe o pH das substâncias abaixo e indique se são ácidas, neutras ou básicas.
- I- Limão, pH= 2,2;
- II- Coca-cola, pH=3;
- III- Café, pH=5;
- IV- Água do mar, pH=8;
- V- Lágrima, pH=7;
- VI- Amoníaco (doméstico), pH=11,8;
- VII- Água pura, pH=7.
- (PUC-RS) No mar existem vários sais
- 7-PUCRS) No mar existem vários sais dissolvidos, tais como cloreto de sódio, cloreto de magnésio, sulfato de magnésio e outros. Também se encontram sais pouco solúveis na água, como o carbonato de cálcio, que forma os corais e as conchas. As fórmulas químicas das substâncias mencionadas no texto são, respectivamente:
- a) NaCl, MgCl₂, MgS e CaCO₃.
- b) NaCl₂, MgCl, Mg₂SO₄ e Ca(CO₃)₂.
- c)NaCl, MgCl₂, MgSO₄ e CaCO₃.
- d) $NaCl_2$, $MgCl_2$, $MgSO_4$ e Ca_2C .
- e) NaCl, Mg₂Cl, MgS e Ca₂CO₃.
- 8-Determine o nome dos seguintes compostos:
- e) SnO a) Li₂O b) SrO f) SnO₂ c) Fe₂O₃ g) PbO h) PbO₂ d) Al_2O_3

- 9- (FEI-SP) Considere os ácidos oxigenados abaixo: $HNO_{2(aq)}$; $HClO_{3(aq)}$; $H_2SO_{3(aq)}$; $H_3PO_{4(aq)}$. Seus nomes são, respectivamente:
- a) nitroso, clórico, sulfuroso, fosfórico.
- b) nítrico, clorídrico, sulfúrico, fosfórico.
- c) nítrico, hipocloroso, sulfuroso, fosforoso.
- d) nitroso, perclórico, sulfúrico, fosfórico.
- e) nítrico, cloroso, sulfídrico, hipofosforoso.
- 10-Nas cinzas, estão presentes substâncias que, em contato com a água, promovem o aparecimento, entre outras, das substâncias conhecidas como hidróxido de potássio e hidróxido de sódio. Escreva uma fórmula que represente cada uma dessas duas substâncias.
- 11- Determine o nome dos seguintes sais:
- b) NaBr a) KCl c) $(NH_4)_2S$ d) KI e) Na₂CO₃ f) CaSO₄ g) Na₂SO₃ h) K₃PO₄ i) NaNO₃
- 12- (UFPA) Considerando a equação química: $Cl_2O_7 + 2 NaOH \rightarrow 2 NaClO_4 + H_2O$
 - os reagentes e produtos pertencem, respectivamente, às funções:
 - a) óxido, base, sal e óxido.
 - b) sal, base, sal e hidreto.
 - c) ácido, sal, óxido e hidreto.
- d) óxido, base, óxido e hidreto.
- e) base, ácido, óxido e óxido.
- 13-(Cefet-PR) Algumas substâncias químicas são conhecidas por nomes populares. Assim temos, por exemplo, sublimado corrosivo (HgCl₂), cal viva (CaO), potassa cáustica (KOH) e espírito de sal (HCl). O sublimado corrosivo, a cal viva, a potassa cáustica e o espírito de sal pertencem, respectivamente, às funções:
- a) ácido, base, óxido, ácido.
- b) sal, sal, base, ácido.
- c) ácido, base, base, sal.
- d) sal, óxido, base, ácido.
- e) ácido, base, sal, óxido.

Gabarito das Questões objetivas

7- C; 9-C; 12-A; 13-D

Bons estudos!

