

Professor: Andouglas Gonçalves da Silva Júnior

Instituto Federal do Rio Grande do Norte

Curso: Técnico em Mecânica

Disciplina: Mecânica dos Fluidos

Introdução

Cinemática dos Fluidos

Estudo dos fluidos em movimento.

- Um dos ramos mais complexos da mecânica dos fluidos;
- Encontrado em diversas situações do cotidiano:
 - transbordamento de rios;
 - rompimento de barragens;
 - vazamentos de petróleo ou gás natural.
- Modelos idealizados facilitam os estudo do movimento dos fluidos.

Conceitos Fundamentais

- Fluido ideal fluido incompressível e que não apresenta força interna de atrito ou viscosidade.
- Linha de escoamento Caminho percorrido por um elemento de um fluido em movimento.
- Escoamento estável ou estacionário.
- Linha de Corrente Linha tangente, em qualquer ponto, que está na direção do vetor velocidade do fluido naquele ponto.

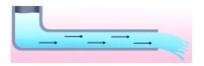


Figura: Escoamento.

Conceito de Vazão

Vazão Volumétrica

Razão entre o volume do fluido escoado em um tempo e o intervalo de tempo considerado.

Matematicamente:

$$Q = \frac{V}{t} \tag{1}$$

Onde V é o volume escoado no tempo t, e Q é a vazão.

Conceito de Vazão

Unidades de vazão:

Grandeza Sistema	Volume (V)	Tempo (t)	Vazão (Q)
CGS (prático)	cm³	S	cm³/s
MKS (internac) SI	m³	S	m³/
MKGFS (técnico)	m³	S	m³/s

Figura: Unidades de vazão.

Além dessas, ainda são muito usadas as unidades litro por segundo e metro cúbico por hora

Conceito de Vazão

Vazão em Massa

Quantidade em massa de fluido que atravessa uma dada seção de escoamento por unidade de tempo.

Matematicamente:

$$Q_m = \frac{m}{t} \tag{2}$$

Onde m é o volume escoado no tempo t, e Q é a vazão.

Relação entre vazão em massa e volumétrica:

$$Q_m = \rho Q \tag{3}$$

Conceito de Vazão

Ainda podemos calulcar a vazão da seguinte forma:

Outra forma de vazão

Se tivermos num condutor um fluido em escoamento uniforme, a vazão poderá ser calculada multiplicando-se a velocidade (V) do fluido, em dada seção do condutor, pela área (A) da seção considerada.

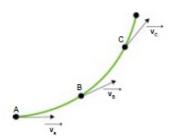
Matematicamente,

$$Q = Av (4)$$

Conceito de Vazão

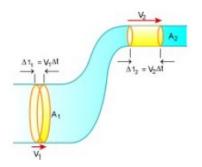
Exemplo Prático

Um condutor de $20 \ cm^2$ de área de secção reta despeja gasolina num reservatório. A valocidade de saída de água é de $60 \ cm^3/s$. Qual a vazão do fluido escoado?


Conceito de Vazão

Exemplo Prático

Um condutor de $20 \ cm^2$ de área de secção reta despeja gasolina num reservatório. A valocidade de saída de água é de $60 \ cm^3/s$. Qual a vazão do fluido escoado? Suponha que o reservatório tenha $1.200.000 \ cm^3$ de capacidade. Qual o tempo necessário para enchê-lo?


Equação da Continuidade

Um fluido está em regime permanente quando a velocidade, num dado ponto, não varia com o tempo.

Equação da Continuidade

Supondo agora que um fluido qualquer escoa em regime permanente no interior de um condutor de secção reta variável.

Equação da Continuidade

Equação da Continuidade

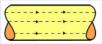
$$\rho_1 A_1 v_1 = \rho_2 A_2 v_2 \tag{5}$$

Equação da Continuidade - Volume constante

$$A_1 v_1 = A_2 v_2 (6)$$

Equação da Continuidade

Exemplo Prático


Considere um fluxo de água num condutor de 15cm de diâmetro com velocidade de $8,5~\mathrm{cm/s}$. Em um determinado ponto, há um estreitamento de diâmetro igual a $10~\mathrm{cm}$. Qual a velocidade da água neste estreitamento?

Descrição e classificação dos Movimentos de fluidos

O movimento de fluidos pode se processar, fundamentalmente, de duas maneiras diferentes:

Escoamento Laminar

- Movimento ordenado das moléculas do fluido;
- Todas as moléculas que passam em um dado ponto devem possuir a mesma velocidade;
- O movimento do fluido pode, em qualquer ponto, ser completamente previsto.

Escoamento Turbulento

- Movimento das moléculas dos fluidos é completamente desordenado;
- Moléculas que passam em um dado ponto, no geral, não possuem mesma velocidade;
- Difícil de fazer previsões sobre o comportamento do fluido.

Descrição e classificação dos Movimentos de fluidos

Turbulento

Descrição e classificação dos Movimentos de fluidos

Número de Reynolds

- Parâmetro admensional mais utilizado na mecânica dos fluidos;
- Reynolds demonstrou, pela primeira vez, que uma combinação de variáveis podia ser utilizada como critério de distinção entre escoamento laminar e turbulento.

Número de Reynolds

$$Re = \frac{\rho VD}{\mu} \tag{7}$$

Onde ρ é a massa específica, V é a velocidade do fluido, D é o diâmetro do tubo e μ é a viscosidade dinâmica do fluido.

Viscosidade

Conceito

A **viscosidade** é uma resistência que o fluido apresenta ao escoamento.

Essa viscosidade pode ser analisada a partir de dois tipos:

Viscosidade Dinâmica

A viscosidade dinâmica (μ) ou viscosidade absoluta é dada em termos da força requerida para mover uma unidade de área a uma unidade de distância.

Viscosidade Cinemática

A viscosidade cinemática (ν) é a relação entre viscosidade dinâmica (μ) pela densidade (ρ).

$$\nu = \frac{\mu}{\rho} \tag{8}$$

Viscosidade

Tabela: My caption

Gases	Viscosidade (Pa/s)
Hidrogênio	8.4×10^{-6}
Ar	17.4×10^{-6}
Xenônio	21.2×10^{-6}
Líquido a 20 °C	Viscosidade (Pa/s)
Álcool Etílico	0.248×10^{-3}
Acetona	0.326×10^{-3}
Metanol	0.597×10^{-3}
Benzeno	0.64×10^{-3}
Água	$1,003 \times 10^{-3}$
Mercúrio	17.0×10^{-3}
Ácido Sulfúrico	30×10^{-3}

Descrição e classificação dos Movimentos de fluidos

Número de Reynolds

$$Re = \frac{\rho VD}{\mu} = \frac{VD}{\nu} \tag{9}$$

Onde ρ é a massa específica, V é a velocidade do fluido, D é o diâmetro do tubo, μ é a viscosidade dinâmicado fluido e ν é a viscosidade cinemática do fluido.

Descrição e classificação dos Movimentos de fluidos

- O Número de Reynolds (Re) é uma medida da razão entre as forças de inércia de um elemento fluido e os efeitos viscosos neste elemento.
 - Re pequeno: efeitos viscosos dominantes (possível desprezar efeitos de inércia);
 - Re grande: efeitos viscosos pequenos em relação a da inércia.
- Não é só a velocidade que determina a característica do escoamento (massa específica, viscosidade e dimensão do duto são igualmente importantes).
 Estes parâmetros combinados produzem o número de Reynolds.

Descrição e classificação dos Movimentos de fluidos

- Não é possível definir precisamente as faixas de números de Reynolds para cada tipo de escoamento (depende também de algumas "perturbações").
- De forma geral temos:
 - Re ≤ 2100 Escoamento Laminar
 - \bullet Re ≥ 4000 Escoamento Turbulento
 - ullet 2100 < Re < 4000 Escoamento de Transição

Descrição e classificação dos Movimentos de fluidos

Exemplo 1

Calcular o número de Reynolds e identificar se o escoamento é laminar ou turbulento sabendo-se que em uma tubulação com diâmetro de 4 cm escoa água com uma velocidade de $0.05\,\mathrm{m/s}$.

Exemplo 2

Um determinado líquido, com $\rho=1200,00kg/m^3$, escoa por uma tubulação de diâmetro 3 cm com uma velocidade de 0,1 m/s, sabendo-se que o número de Reynolds é 9544,35. Determine qual a viscosidade dinâmica do líquido.